
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3876749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein. Science, 2002, 298, 1395-1401.	12.6	2,159
2	THE NOD MOUSE: A Model of Immune Dysregulation. Annual Review of Immunology, 2005, 23, 447-485.	21.8	949
3	The Cellular Mechanism of Aire Control of T Cell Tolerance. Immunity, 2005, 23, 227-239.	14.3	559
4	Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. Journal of Experimental Medicine, 2008, 205, 1983-1991.	8.5	482
5	Deletional Tolerance Mediated by Extrathymic Aire-Expressing Cells. Science, 2008, 321, 843-847.	12.6	421
6	Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes, 2018, 67, 1471-1480.	0.6	386
7	Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity, 2018, 49, 33-41.e7.	14.3	380
8	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
9	Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, 2022, 603, 321-327.	27.8	343
10	Autoimmune Polyendocrine Syndromes. New England Journal of Medicine, 2018, 378, 1132-1141.	27.0	311
11	COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nature Genetics, 2015, 47, 654-660.	21.4	302
12	Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549, 111-115.	27.8	247
13	Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. Journal of Experimental Medicine, 2006, 203, 2727-2735.	8.5	240
14	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	27.8	221
15	AIRE expands: new roles in immune tolerance and beyond. Nature Reviews Immunology, 2016, 16, 247-258.	22.7	220
16	Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care, 2020, 43, 5-12.	8.6	220
17	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	27.8	216
18	Modifier loci condition autoimmunity provoked by Aire deficiency. Journal of Experimental Medicine, 2005, 202, 805-815.	8.5	206

#	Article	IF	CITATIONS
19	Landscape of stimulation-responsive chromatin across diverse human immune cells. Nature Genetics, 2019, 51, 1494-1505.	21.4	196
20	Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. Journal of Experimental Medicine, 2021, 218, .	8.5	185
21	Thymic regulatory T cells arise via two distinct developmental programs. Nature Immunology, 2019, 20, 195-205.	14.5	163
22	Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Science Translational Medicine, 2021, 13, eabh2624.	12.4	155
23	New Frontiers in the Treatment of Type 1 Diabetes. Cell Metabolism, 2020, 31, 46-61.	16.2	147
24	Control of central and peripheral tolerance by Aire. Immunological Reviews, 2011, 241, 89-103.	6.0	145
25	Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development. Cell Stem Cell, 2013, 13, 219-229.	11.1	145
26	Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. Journal of Clinical Investigation, 2008, 118, 1712-1726.	8.2	143
27	Extrathymic Aire-Expressing Cells Are a Distinct Bone Marrow-Derived Population that Induce Functional Inactivation of CD4+ T Cells. Immunity, 2013, 39, 560-572.	14.3	133
28	Lineage Tracing and Cell Ablation Identify a Post-Aire-Expressing Thymic Epithelial Cell Population. Cell Reports, 2013, 5, 166-179.	6.4	115
29	Low-Dose Anti-Thymocyte Globulin (ATG) Preserves β-Cell Function and Improves HbA1c in New-Onset Type 1 Diabetes. Diabetes Care, 2018, 41, 1917-1925.	8.6	114
30	Aire and T cell development. Current Opinion in Immunology, 2011, 23, 198-206.	5.5	111
31	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
32	Immune checkpoint inhibitor diabetes mellitus: a novel form of autoimmune diabetes. Clinical and Experimental Immunology, 2020, 200, 131-140.	2.6	104
33	Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance. Journal of Experimental Medicine, 2014, 211, 761-768.	8.5	101
34	Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nature Communications, 2021, 12, 1096.	12.8	96
35	Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7847-7852.	7.1	93
36	BPIFB1 Is a Lung-Specific Autoantigen Associated with Interstitial Lung Disease. Science Translational Medicine, 2013, 5, 206ra139.	12.4	87

#	Article	IF	CITATIONS
37	Thymic tolerance as a key brake on autoimmunity. Nature Immunology, 2018, 19, 659-664.	14.5	86
38	Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science, 2021, 371, .	12.6	84
39	Monogenic Autoimmunity. Annual Review of Immunology, 2012, 30, 393-427.	21.8	81
40	Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature, 2018, 560, 107-111.	27.8	81
41	The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nature Immunology, 2014, 15, 258-265.	14.5	78
42	Effector Mechanisms of the Autoimmune Syndrome in the Murine Model of Autoimmune Polyglandular Syndrome Type 1. Journal of Immunology, 2008, 181, 4072-4079.	0.8	72
43	A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity, 2019, 50, 362-377.e6.	14.3	72
44	Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1. Scientific Reports, 2016, 6, 20104.	3.3	61
45	Identification of an Autoantigen Demonstrates a Link Between Interstitial Lung Disease and a Defect in Central Tolerance. Science Translational Medicine, 2009, 1, 9ra20.	12.4	60
46	Transglutaminase 4 as a prostate autoantigen in male subfertility. Science Translational Medicine, 2015, 7, 292ra101.	12.4	60
47	Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia, 2017, 60, 2139-2147.	6.3	59
48	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	8.5	59
49	Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity, 2018, 48, 923-936.e4.	14.3	54
50	Neutralizing Autoantibodies to Type I Interferons in COVID-19 Convalescent Donor Plasma. Journal of Clinical Immunology, 2021, 41, 1169-1171.	3.8	53
51	Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. ELife, 2020, 9, .	6.0	53
52	Insights into immune tolerance from AIRE deficiency. Current Opinion in Immunology, 2017, 49, 71-78.	5.5	52
53	<i>TCF7L2</i> Genetic Variants Contribute to Phenotypic Heterogeneity of Type 1 Diabetes. Diabetes Care, 2018, 41, 311-317.	8.6	51
54	Identification of a novel cis-regulatory element essential for immune tolerance. Journal of Experimental Medicine, 2015, 212, 1993-2002.	8.5	47

#	Article	IF	CITATIONS
55	An Autoimmune Response to Odorant Binding Protein 1a Is Associated with Dry Eye in the <i>Aire</i> -Deficient Mouse. Journal of Immunology, 2010, 184, 4236-4246.	0.8	44
56	STAT1 Gain of Function, Type 1 Diabetes, and Reversal with JAK Inhibition. New England Journal of Medicine, 2020, 383, 1494-1496.	27.0	44
57	An aberrant prostate antigen–specific immune response causes prostatitis in mice and is associated with chronic prostatitis in humans. Journal of Clinical Investigation, 2009, 119, 2031-41.	8.2	44
58	Acquired Autoimmune Polyglandular Syndrome, Thymoma, and an AIRE Defect. New England Journal of Medicine, 2010, 362, 764-766.	27.0	43
59	Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. ELife, 2020, 9, .	6.0	43
60	Pathogenic CD4+ T cells recognizing an unstable peptide of insulin are directly recruited into islets bypassing local lymph nodes. Journal of Experimental Medicine, 2013, 210, 2403-2414.	8.5	42
61	High-resolution epitope mapping of anti-Hu and anti-Yo autoimmunity by programmable phage display. Brain Communications, 2020, 2, fcaa059.	3.3	41
62	Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Science Immunology, 2021, 6, eabl5053.	11.9	39
63	Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens. Frontiers in Immunology, 2018, 9, 2902.	4.8	38
64	Canonical micro <scp>RNA</scp> s in thymic epithelial cells promote central tolerance. European Journal of Immunology, 2014, 44, 1313-1319.	2.9	37
65	Exome Sequencing Reveals Mutations in AIRE as a Cause of Isolated Hypoparathyroidism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1726-1733.	3.6	35
66	Checkpoint inhibitor-induced insulin-dependent diabetes: an emerging syndrome. Lancet Diabetes and Endocrinology,the, 2019, 7, 421-423.	11.4	34
67	Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity. JCI Insight, 2017, 2, .	5.0	34
68	<i>Chlamydia pecorum</i> . Journal of Veterinary Diagnostic Investigation, 2016, 28, 184-189.	1.1	33
69	A human mutation in STAT3 promotes type 1 diabetes through a defect in CD8+ T cell tolerance. Journal of Experimental Medicine, 2021, 218, .	8.5	32
70	Central tolerance to self revealed by the autoimmune regulator. Annals of the New York Academy of Sciences, 2015, 1356, 80-89.	3.8	29
71	Dominant-negative loss of function arises from a second, more frequent variant within the SAND domain of autoimmune regulator (AIRE). Journal of Autoimmunity, 2018, 88, 114-120.	6.5	29
72	Autoimmune endocrine disease. Current Opinion in Immunology, 2002, 14, 760-764.	5.5	28

#	Article	IF	CITATIONS
73	Autoimmune Polyendocrine Syndromes. New England Journal of Medicine, 2018, 378, 2542-2544.	27.0	28
74	Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes. Diabetes Care, 2019, 42, 192-199.	8.6	27
75	Evaluating the Association between Enlarged Perivascular Spaces and Disease Worsening in Multiple Sclerosis. Journal of Neuroimaging, 2018, 28, 273-277.	2.0	24
76	Autoimmune Endocrinopathies: An Emerging Complication of Immune Checkpoint Inhibitors. Annual Review of Medicine, 2021, 72, 313-330.	12.2	24
77	Transcription Factor 7-Like 2 (<i>TCF7L2</i>) Gene Polymorphism and Progression From Single to Multiple Autoantibody Positivity in Individuals at Risk for Type 1 Diabetes. Diabetes Care, 2018, 41, 2480-2486.	8.6	23
78	Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. ELife, 2021, 10, .	6.0	23
79	Elastase 3B mutation links to familial pancreatitis with diabetes and pancreatic adenocarcinoma. Journal of Clinical Investigation, 2019, 129, 4676-4681.	8.2	22
80	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	8.5	21
81	Autoantibodies Targeting a Collecting Duct–Specific Water Channel in Tubulointerstitial Nephritis. Journal of the American Society of Nephrology: JASN, 2016, 27, 3220-3228.	6.1	19
82	A large CRISPR-induced bystander mutation causes immune dysregulation. Communications Biology, 2019, 2, 70.	4.4	19
83	LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. Journal of Clinical Investigation, 2016, 126, 3758-3771.	8.2	19
84	Extrathymic <i>Aire</i> -expressing cells support maternal-fetal tolerance. Science Immunology, 2021, 6, .	11.9	17
85	Modeling human T1D-associated autoimmune processes. Molecular Metabolism, 2022, 56, 101417.	6.5	13
86	Autoantibodies to Perilipin-1 Define a Subset of Acquired Generalized Lipodystrophy. Diabetes, 2023, 72, 59-70.	0.6	13
87	HUMAN TRACHEOBRONCHIAL DEPOSITION AND EFFECT OF A CHOLINERGIC AEROSOL INHALED BY EXTREMELY SLOW INHALATIONS. Experimental Lung Research, 1999, 25, 335-352.	1.2	11
88	The autoimmune targets in IPEX are dominated by gut epithelial proteins. Journal of Allergy and Clinical Immunology, 2019, 144, 327-330.e8.	2.9	11
89	Early Predictors of Clinical and <scp>MRI</scp> Outcomes Using <scp>Least Absolute Shrinkage and Selection Operator (LASSO)</scp> in Multiple Sclerosis. Annals of Neurology, 2022, 92, 87-96.	5.3	11
90	More than Meets the Eye: Monogenic Autoimmunity Strikes Again. Immunity, 2015, 42, 986-988.	14.3	10

#	Article	IF	CITATIONS
91	Pulling RANK on Cancer: Blocking Aire-Mediated Central Tolerance to Enhance Immunotherapy. Cancer Immunology Research, 2019, 7, 854-859.	3.4	8
92	Unbiased Modifier Screen Reveals That Signal Strength Determines the Regulatory Role Murine TLR9 Plays in Autoantibody Production. Journal of Immunology, 2015, 194, 3675-3686.	0.8	7
93	The epigenetic regulator ATF7ip inhibits <i>Il2</i> expression, regulating Th17 responses. Journal of Experimental Medicine, 2019, 216, 2024-2037.	8.5	7
94	GILT in Thymic Epithelial Cells Facilitates Central CD4 T Cell Tolerance to a Tissue-Restricted, Melanoma-Associated Self-Antigen. Journal of Immunology, 2020, 204, 2877-2886.	0.8	6
95	Comment on 'AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies'. ELife, 2019, 8, .	6.0	6
96	Development of dental caries and risk factors between 1 and 7Âyears of age in areas of high risk for dental caries in Stockholm, Sweden. European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry, 2021, 22, 947-957.	1.9	5
97	Diabetes With Multiple Autoimmune and Inflammatory Conditions Linked to an Activating SKAP2 Mutation. Diabetes Care, 2021, 44, 1816-1825.	8.6	5
98	Response to Comments on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections― Science, 2021, 373, eabi8835.	12.6	5
99	Breaking β Cell Tolerance After 100 Years of Life: Intratumoral Immunotherapy–Induced Diabetes Mellitus. Journal of the Endocrine Society, 2020, 4, bvaa114.	0.2	3
100	Serum NfL levels in the first five years predict 10-year thalamic fraction in patients with MS. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2022, 8, 205521732110693.	1.0	3
101	Editorial overview: Autoimmunity. Current Opinion in Immunology, 2015, 37, v-vii.	5.5	2
102	SARS-CoV-2 transmission dynamics and immune responses in a household of vaccinated persons. Clinical Infectious Diseases, 2022, , .	5.8	1
103	95-OR: Interleukin-17 Receptor C Is a Regulator of Autoimmune Diabetes in Humans. Diabetes, 2019, 68, .	0.6	0