
Rodica Cristescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3876329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. International Journal of Bioprinting, 2019, 6, 211.	3.4	73
2	Matrix-assisted pulsed laser methods for biofabrication. MRS Bulletin, 2011, 36, 1043-1050.	3.5	72
3	Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Applied Surface Science, 2014, 302, 262-267.	6.1	64
4	Deposition of biopolymer thin films by matrix assisted pulsed laser evaporation. Applied Physics A: Materials Science and Processing, 2004, 79, 1023-1026.	2.3	59
5	Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 248, 422-427.	6.1	48
6	Bacteriocins in the Era of Antibiotic Resistance: Rising to the Challenge. Pharmaceutics, 2021, 13, 196.	4.5	47
7	Pulsed laser deposition of biocompatible polymers: a comparative study in case of pullulan. Thin Solid Films, 2004, 453-454, 262-268.	1.8	36
8	MAPLE applications in studying organic thin films. Laser Physics, 2007, 17, 66-70.	1.2	36
9	Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties. Biofabrication, 2013, 5, 015007.	7.1	36
10	Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 2007, 253, 6476-6479.	6.1	34
11	Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE. Applied Surface Science, 2011, 257, 5287-5292.	6.1	32
12	Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Applied Surface Science, 2006, 252, 4647-4651.	6.1	31
13	Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein Journal of Nanotechnology, 2014, 5, 872-880.	2.8	31
14	Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering. Applied Surface Science, 2017, 417, 234-243.	6.1	31
15	Composite biodegradable biopolymer coatings of silk fibroin – Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications. Applied Surface Science, 2015, 355, 1123-1131.	6.1	30
16	New results in pulsed laser deposition of poly-methyl-methacrylate thin films. Applied Surface Science, 2003, 208-209, 645-650.	6.1	27
17	Fabrication of magnetite-based core–shell coated nanoparticles with antibacterial properties. Biofabrication, 2015, 7, 015014.	7.1	25
18	Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study. Applied Surface Science, 2016, 374, 290-296.	6.1	23

RODICA CRISTESCU

#	Article	IF	CITATIONS
19	Processing of mussel adhesive protein analog thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 247, 217-224.	6.1	22
20	Long-Term Evaluation of Dip-Coated PCL-Blend-PEG Coatings in Simulated Conditions. Polymers, 2020, 12, 717.	4.5	22
21	Functionalized polyvinyl alcohol derivatives thin films for controlled drug release and targeting systems: MAPLE deposition and morphological, chemical and in vitro characterization. Applied Surface Science, 2009, 255, 5600-5604.	6.1	21
22	Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays. Applied Surface Science, 2012, 258, 9250-9255.	6.1	21
23	Processing of mussel-adhesive protein analog copolymer thin films by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2005, 248, 416-421.	6.1	20
24	Laser processing of natural mussel adhesive protein thin films. Materials Science and Engineering C, 2007, 27, 409-413.	7.3	20
25	Thin films of polymer mimics of cross-linking mussel adhesive proteins deposited by matrix assisted pulsed laser evaporation. Applied Surface Science, 2009, 255, 5496-5498.	6.1	19
26	MAPLE deposition of Mn(III) metalloporphyrin thin films: Structural, topographical and electrochemical investigations. Applied Surface Science, 2011, 257, 5293-5297.	6.1	18
27	Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 106-110.	3.5	17
28	Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation. Applied Surface Science, 2013, 278, 207-210.	6.1	17
29	Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Applied Surface Science, 2007, 253, 7755-7760.	6.1	16
30	Laser deposition of cryoglobulin blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2006, 252, 4652-4655.	6.1	15
31	Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetite. Polymers, 2019, 11, 283.	4.5	15
32	Matrix assisted pulsed laser evaporation of poly(d,l-lactide) thin films for controlled-release drug systems. Applied Surface Science, 2007, 253, 7702-7706.	6.1	14
33	Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods. Applied Surface Science, 2013, 278, 211-213.	6.1	14
34	A Sensitive A3B Porphyrin Nanomaterial for CO2 Detection. Molecules, 2014, 19, 21239-21252.	3.8	14
35	Printing amphotericin B on microneedles using matrixassisted pulsed laser evaporationÂ. International Journal of Bioprinting, 2017, 3, 147.	3.4	12
36	Laser processing of polyethylene glycol derivative and block copolymer thin films. Applied Surface Science, 2009, 255, 5605-5610.	6.1	11

RODICA CRISTESCU

#	Article	IF	CITATIONS
37	Histamine detection using functionalized porphyrin as electrochemical mediator. Comptes Rendus Chimie, 2018, 21, 270-276.	0.5	11
38	Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2009, 255, 9873-9876.	6.1	10
39	Processing of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80 (P(CPP:SA)20:80) by matrix-assisted pulsed laser evaporation for drug delivery systems. Applied Surface Science, 2007, 254, 1169-1173.	6.1	9
40	Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE. Applied Surface Science, 2015, 336, 234-239.	6.1	9
41	Matrix assisted pulsed laser evaporation of pullulan tailor-made biomaterial thin films for controlled drug delivery systems. Journal of Physics: Conference Series, 2007, 59, 144-149.	0.4	8
42	Matrix-assisted pulsed-laser evaporation of DOPA-modified poly(ethylene glycol) thin films. Journal of Adhesion Science and Technology, 2007, 21, 287-299.	2.6	8
43	Pulsed Laser Processing of Functionalized Polysaccharides for Controlled Release Drug Delivery Systems. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 231-236.	0.5	8
44	Thin films growth parameters in MAPLE; application to fibrinogen. Journal of Physics: Conference Series, 2007, 59, 22-27.	0.4	7
45	An Experimental Study on Nano-Carbon Films as an Anti-Wear Protection for Drilling Tools. Coatings, 2017, 7, 228.	2.6	7
46	Solution for green organic thin film transistors: Fe3O4 nano-core with PABA external shell as p-type film. Journal of Materials Science: Materials in Electronics, 2020, 31, 3063-3073.	2.2	7
47	Successful Release of Voriconazole and Flavonoids from MAPLE Deposited Bioactive Surfaces. Applied Sciences (Switzerland), 2019, 9, 786.	2.5	6
48	Isoflavonoid-Antibiotic Thin Films Fabricated by MAPLE with Improved Resistance to Microbial Colonization. Molecules, 2021, 26, 3634.	3.8	5
49	Novel Antimicrobial Surfaces to Defeat COVID-19 Transmission. MRS Advances, 2020, 5, 2839-2851.	0.9	5
50	Composite Drug Delivery System Based on Amorphous Calcium Phosphate–Chitosan: An Efficient Antimicrobial Platform for Extended Release of Tetracycline. Pharmaceutics, 2021, 13, 1659.	4.5	5
51	<title>Particulates in pulsed laser deposition: formation mechanisms and possible approaches to their elimination</title> ., 2002, 4762, 64.		4
52	Matrix-Assisted Pulsed laser Evaporation-deposited Rapamycin Thin Films Maintain Antiproliferative Activity. International Journal of Bioprinting, 2019, 6, 188.	3.4	3
53	Functionalized Thin Films and Structures Obtained by Novel Laser Processing Issues. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006, , 211-226.	0.1	2
54	Laser Thin Film Processing of Biopolymers: Mussel Adhesive Protein Analog. Materials Research Society Symposia Proceedings, 2005, 897, 1.	0.1	0

0

#	Article	IF	CITATIONS
55	<title>Experiments of MAPLE thin film technology</title> . , 2007, , .		0

56 <title>Pulsed laser deposition of poly(methyl methacrylate) thin films: experimental evidence by XRD, XPS, AFM, optical microscopy, Raman spectroscopy, and FTIR/title>., 2003, , .