Zhaoling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3875565/publications.pdf Version: 2024-02-01

ZHAOUNG LL

#	Article	IF	CITATIONS
1	Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy, 2022, 93, 106904.	16.0	63
2	Flexible Temperature Sensors Constructed with Fiber Materials. Advanced Materials Technologies, 2022, 7, .	5.8	82
3	One-step extraction of ramie cellulose fibers and reutilization of degumming solution. Textile Reseach Journal, 2022, 92, 3579-3590.	2.2	6
4	Process optimization and comprehensive utilization of recyclable deep eutectic solvent for the production of ramie cellulose fibers. Cellulose, 2022, 29, 3689-3701.	4.9	17
5	Superstable and Intrinsically Selfâ€Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin. Angewandte Chemie, 2022, 134, .	2.0	24
6	Superstable and Intrinsically Selfâ€Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin. Angewandte Chemie - International Edition, 2022, 61, .	13.8	70
7	Nanocrystalline cellulose extracted from bast fibers: Preparation, characterization, and application. Carbohydrate Polymers, 2022, 290, 119462.	10.2	30
8	Anthraquinone-assisted deep eutectic solvent degumming of ramie fibers: Evaluation of fiber properties and degumming performance. Industrial Crops and Products, 2022, 185, 115115.	5.2	14
9	Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing. Nano Energy, 2021, 81, 105669.	16.0	97
10	Highly flexible, efficient, and wearable infrared radiation heating carbon fabric. Chemical Engineering Journal, 2021, 417, 128114.	12.7	31
11	Flexible Highâ€Resolution Triboelectric Sensor Array Based on Patterned Laserâ€Induced Graphene for Selfâ€Powered Realâ€Time Tactile Sensing. Advanced Functional Materials, 2021, 31, 2100709.	14.9	152
12	Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Science Advances, 2021, 7, .	10.3	166
13	Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. Nano Energy, 2021, 85, 106031.	16.0	82
14	High-efficiency and recyclable ramie cellulose fiber degumming enabled by deep eutectic solvent. Industrial Crops and Products, 2021, 171, 113879.	5.2	28
15	A dual-mode electronic skin textile for pressure and temperature sensing. Chemical Engineering Journal, 2021, 425, 130599.	12.7	44
16	A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption. Carbon, 2020, 157, 703-713.	10.3	109
17	Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing. Nano Energy, 2020, 69, 104429.	16.0	149
18	Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring. ACS Applied Materials & amp; Interfaces, 2020, 12, 1597-1605.	8.0	121

ZHAOLING LI

#	Article	IF	CITATIONS
19	Allâ€Fiber Structured Electronic Skin with High Elasticity and Breathability. Advanced Functional Materials, 2020, 30, 1908411.	14.9	170
20	Microwave-assisted fabrication of sea cucumber-like hollow structured composite for high-performance electromagnetic wave absorption. Chemical Engineering Journal, 2020, 392, 123646.	12.7	45
21	Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Research, 2020, 13, 3068-3074.	10.4	27
22	Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy, 2020, 78, 105208.	16.0	84
23	Highly Flexible, Efficient, and Sandwich-Structured Infrared Radiation Heating Fabric. ACS Applied Materials & Interfaces, 2020, 12, 11016-11025.	8.0	46
24	Highly Wearable, Breathable, and Washable Sensing Textile for Human Motion and Pulse Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 19965-19973.	8.0	119
25	Seaweedâ€Derived Electrospun Nanofibrous Membranes for Ultrahigh Protein Adsorption. Advanced Functional Materials, 2019, 29, 1905610.	14.9	36
26	Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Applied Materials & Interfaces, 2019, 11, 38023-38030.	8.0	52
27	Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy, 2019, 58, 750-758.	16.0	155
28	Morphology and Structure of Electrospun Nanofibrous Materials. , 2019, , 112-178.		1
29	Extraction of Ramie Fiber in Alkali Hydrogen Peroxide System Supported by Controlled-release Alkali Source. Journal of Visualized Experiments, 2018, , .	0.3	3
30	Effect of Pre-carbonization Temperature on the Properties of Plasticized Spinning Polyacrylonitrile Fibers. Fibers and Polymers, 2018, 19, 692-696.	2.1	5
31	Solar thermal energy harvesting properties of spacer fabric composite used for transparent insulation materials. Solar Energy Materials and Solar Cells, 2018, 174, 140-145.	6.2	31
32	Light and Flexible Composite Nanofibrous Membranes for High-Efficiency Electromagnetic Absorption in a Broad Frequency. ACS Applied Materials & Interfaces, 2018, 10, 44561-44569.	8.0	47
33	Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries. Electrochimica Acta, 2018, 292, 646-654.	5.2	18
34	Nanofibrous membrane constructed magnetic materials for high-efficiency electromagnetic wave absorption. Composites Part B: Engineering, 2018, 155, 397-404.	12.0	50
35	Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting. Nano Energy, 2018, 53, 726-733.	16.0	144
36	Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector. Renewable Energy, 2018, 129, 553-560.	8.9	32

ZHAOLING LI

#	Article	IF	CITATIONS
37	Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. Scientific Reports, 2018, 8, 12402.	3.3	58
38	Energy harvesting from human motions for wearable applications. Industria Textila, 2018, 69, 390-393.	0.8	4
39	Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter. Scientific Reports, 2017, 7, 40550.	3.3	90
40	Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 2017, 36, 341-348.	16.0	162
41	Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite. Iranian Polymer Journal (English Edition), 2017, 26, 341-354.	2.4	22
42	Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. Journal of Materials Chemistry A, 2017, 5, 497-502.	10.3	332
43	Optimization design of a flexible absorption device for solar energy application. E-Polymers, 2017, 17, 227-234.	3.0	6
44	Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 2017, 40, 282-288.	16.0	145
45	Sustained-release alkali source used in the oxidation degumming of ramie. Textile Reseach Journal, 2017, 87, 1155-1164.	2.2	27
46	Characterization and control of oxidized cellulose in ramie fibers during oxidative degumming. Textile Reseach Journal, 2017, 87, 1828-1840.	2.2	13
47	Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Solar Energy Materials and Solar Cells, 2017, 159, 345-351.	6.2	33
48	Property of ramie fiber degummed with Fenton reagent. Fibers and Polymers, 2017, 18, 1891-1897.	2.1	32
49	Analysis of Structural Changes in Jute Fibers after Peracetic Acid Treatment. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	1.0	15
50	Structural and thermal property changes of plasticized spinning polyacrylonitrile fibers under different spinning speeds. Journal of Applied Polymer Science, 2017, 134, 45267.	2.6	10
51	Rolling Friction Enhanced Free tanding Triboelectric Nanogenerators and their Applications in Selfâ€Powered Electrochemical Recovery Systems. Advanced Functional Materials, 2016, 26, 1054-1062.	14.9	101
52	The cellulose protection agent used in the oxidation degumming of ramie. Textile Reseach Journal, 2016, 86, 1109-1118.	2.2	24
53	Flexible Hierarchical ZrO ₂ Nanoparticle-Embedded SiO ₂ Nanofibrous Membrane as a Versatile Tool for Efficient Removal of Phosphate. ACS Applied Materials & Interfaces, 2016, 8, 34668-34676.	8.0	81
54	Triboelectrificationâ€Enabled Selfâ€Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials, 2016, 28, 2983-2991.	21.0	204

Zhaoling Li

#	Article	IF	CITATIONS
55	High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy, 2016, 22, 548-557.	16.0	132
56	Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Textile Reseach Journal, 2016, 86, 451-460.	2.2	36
57	A Flexible Fiberâ€Based Supercapacitor–Triboelectricâ€Nanogenerator Power System for Wearable Electronics. Advanced Materials, 2015, 27, 4830-4836.	21.0	322
58	An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584.	14.6	135
59	β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy and Environmental Science, 2015, 8, 887-896.	30.8	192
60	Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326.	21.0	487
61	Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano, 2015, 9, 3324-3331.	14.6	509
62	Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16, 38-46.	16.0	255
63	Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording. ACS Nano, 2015, 9, 4236-4243.	14.6	419
64	Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6, 8401.	12.8	261
65	Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming. Textile Reseach Journal, 2015, 85, 2125-2135.	2.2	34
66	Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-12343.	14.6	111
67	The effect of oxidation–reduction potential on the degumming of ramie fibers with hydrogen peroxide. Journal of the Textile Institute, 2015, 106, 1251-1261.	1.9	14
68	Effect of peroxide and softness modification on properties of ramie fiber. Fibers and Polymers, 2014, 15, 2105-2111.	2.1	40
69	Wearable triboelectric nanogenerators constructed from electrospun nanofibers. , 0, , 8-1-8-25.		3