Giacomo R Ditullio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3874393/publications.pdf

Version: 2024-02-01

61 5,289 33 61 g-index

63 63 63 63 4290

times ranked

citing authors

docs citations

all docs

#	Article	lF	Citations
1	Adaptive responses of marine diatoms to zinc scarcity and ecological implications. Nature Communications, 2022, 13, 1995.	12.8	10
2	Inhibited Manganese Oxide Formation Hinders Cobalt Scavenging in the Ross Sea. Global Biogeochemical Cycles, 2021, 35, e2020GB006706.	4.9	8
3	Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean. Nature Microbiology, 2021, 6, 173-186.	13.3	45
4	Biogeochemical and ecological variability during the late summer–early autumn transition at an iceâ€floe drift station in the Central Arctic Ocean. Limnology and Oceanography, 2021, 66, S363.	3.1	5
5	Minimal cobalt metabolism in the marine cyanobacterium <i>Prochlorococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15740-15747.	7.1	25
6	Phaeocystis antarctica unusual summer bloom in stratified antarctic coastal waters (Terra Nova Bay,) Tj ETQq0 0	0 rgBT /C	overlack 10 Tf
7	Rebound of shelf water salinity in the Ross Sea. Nature Communications, 2019, 10, 5441.	12.8	56
8	Coccolithovirus facilitation of carbon export in the North Atlantic. Nature Microbiology, 2018, 3, 537-547.	13.3	114
9	Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Science Advances, 2018, 4, eaau5716.	10.3	78
10	Colony formation in & amp; It; i& amp; gt; Phaeocystis antarctica & amp; It; /i& amp; gt; connecting molecular mechanisms with iron biogeochemistry. Biogeosciences, 2018, 15, 4923-4942.	3.3	44
11	Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnology and Oceanography, 2017, 62, 1984-2003.	3.1	83
12	Alkenone unsaturation during virus infection of Emiliania huxleyi. Organic Geochemistry, 2017, 111, 82-85.	1.8	3
13	Differences in pigmentation between life cycle stages in <i>Scrippsiella lachrymosa</i> (dinophyceae). Journal of Phycology, 2016, 52, 64-74.	2.3	11
14	Role of dimethylsulfoniopropionate as an osmoprotectant following gradual salinity shifts in the sea-ice diatom Fragilariopsis cylindrus. Environmental Chemistry, 2016, 13, 181.	1.5	31
15	The multiple fates of sinking particles in the North Atlantic Ocean. Global Biogeochemical Cycles, 2015, 29, 1471-1494.	4.9	76
16	Needles in the blue sea: Subâ€species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome. Proteomics, 2015, 15, 3521-3531.	2.2	49
17	Novel molecular determinants of viral susceptibility and resistance in the lipidome of <pre><scp><i>E</i></scp><i>miliania huxleyi</i></pre> <pre>cscp><i>E</i></pre> <pre>0</pre> <pre>10</pre> <pre>10</pre> <pre>11</pre> <pre>11</pre> <pre>12</pre> <pre>12</pre> <pre>13</pre> <pre>14</pre> <pre>16</pre> <pre>11</pre> <pre>12</pre> <pre>12</pre> <pre>13</pre> <pre>14</pre> <pre>16</pre> <pre>16</pre> <pre>17</pre> <pre>17</pre> <pre>18</pre> <pre>18</pre> <pre>19</pre> <pre>19 <pre>19</pre> <pre>19 <pre>19</pre> <pre>19</pre></pre></pre>	3.8	68
18	Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science, 2014, 345, 1173-1177.	12.6	174

#	Article	IF	Citations
19	Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom. Current Biology, 2014, 24, 2041-2046.	3.9	110
20	Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae). PLoS ONE, 2014, 9, e112134.	2.5	29
21	In situ determination of cellular DMSP and pigment quotas in a Prorocentrum minimum bloom near the Falkland Islands. Advances in Oceanography and Limnology, 2014, 5, 123.	0.6	3
22	Spatial and temporal variations in variable fluoresence in the Ross Sea (Antarctica): Oceanographic correlates and bloom dynamics. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 79, 141-155.	1.4	40
23	Basinâ€scale inputs of cobalt, iron, and manganese from the Benguelaâ€Angola front to the South Atlantic Ocean. Limnology and Oceanography, 2012, 57, 989-1010.	3.1	134
24	Effects of increased temperature on dimethylsulfoniopropionate (DMSP) concentration and methionine synthase activity in Symbiodinium microadriaticum. Biogeochemistry, 2012, 110, 17-29.	3.5	28
25	Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Analytical and Bioanalytical Chemistry, 2012, 404, 777-784.	3.7	22
26	Diagnostic modeling of dimethylsulfide production in coastal water west of the Antarctic Peninsula. Continental Shelf Research, 2012, 32, 96-109.	1.8	17
27	Vertical structure, seasonal drawdown, and net community production in the Ross Sea, Antarctica. Journal of Geophysical Research, 2011, 116, .	3.3	34
28	Iron Limitation of a Springtime Bacterial and Phytoplankton Community in the Ross Sea: Implications for Vitamin B12 Nutrition. Frontiers in Microbiology, 2011, 2, 160.	3. 5	48
29	Potential impact of increased temperature and CO2on particulate dimethylsulfoniopropionate in the Southeastern Bering Sea. Advances in Oceanography and Limnology, 2011, 2, 33-47.	0.6	1
30	Proteomic Analysis of a Sea-Ice Diatom: Salinity Acclimation Provides New Insight into the Dimethylsulfoniopropionate Production Pathway \hat{A} \hat{A} . Plant Physiology, 2011, 157, 1926-1941.	4.8	59
31	A shipboard natural community continuous culture system for ecologically relevant low-level nutrient enrichment experiments. Limnology and Oceanography: Methods, 2011, 1, 82-91.	2.0	13
32	Phytoplankton photosynthetic pigments in the Ross Sea: Patterns and relationships among functional groups. Journal of Marine Systems, 2010, 82, 177-185.	2.1	36
33	Factors determining the vertical profile of dimethylsulfide in the Sargasso Sea during summer. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1505-1518.	1.4	26
34	Vitamin B _{12} and iron colimitation of phytoplankton growth in the Ross Sea. Limnology and Oceanography, 2007, 52, 1079-1093.	3.1	187
35	Influence of iron on algal community composition and physiological status in the Peru upwelling system. Limnology and Oceanography, 2005, 50, 1887-1907.	3.1	37
36	Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Marine Chemistry, 2005, 93, 81-103.	2.3	300

#	Article	IF	CITATIONS
37	Iron limitation of phytoplankton in an urbanized vs. forested southeastern U.S. salt marsh estuary. Journal of Experimental Marine Biology and Ecology, 2004, 298, 233-254.	1.5	26
38	Thermodynamic Constraints on Microbially Mediated Processes in Lakes of the McMurdo Dry Valleys, Antarctica. Geomicrobiology Journal, 2004, 21, 221-237.	2.0	36
39	Cobalt and nickel in the Peru upwelling region: A major flux of labile cobalt utilized as a micronutrient. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	119
40	Elevated levels of dimethylatedâ€sulfur compounds in Lake Bonney, a poorly ventilated Antarctic lake. Limnology and Oceanography, 2004, 49, 1044-1055.	3.1	20
41	Flavodoxin as a diagnostic indicator of chronic iron limitation in the Ross Sea and New Zealand sector of the Southern Ocean. Antarctic Research Series, 2003, , 209-219.	0.2	4
42	A shipboard natural community continuous culture system for ecologically relevant lowâ€level nutrient enrichment experiments. Limnology and Oceanography: Methods, 2003, 1, 82-91.	2.0	30
43	Algal pigment ratios in the Ross Sea: Implications for Chemtax analysis of Southern Ocean data. Antarctic Research Series, 2003, , 35-51.	0.2	11
44	Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature, 2000, 404, 595-598.	27.8	292
45	Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters. Journal of Geophysical Research, 2000, 105, 11321-11336.	3.3	247
46	Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. Journal of Geophysical Research, 2000, 105, 8827-8846.	3.3	183
47	Phytoplankton Community Structure and the Drawdown of Nutrients and CO2 in the Southern Ocean. Science, 1999, 283, 365-367.	12.6	719
48	Limitation of algal growth by iron deficiency in the Australian Subantarctic Region. Geophysical Research Letters, 1999, 26, 2865-2868.	4.0	109
49	Dimethylsulfoniopropionate in sea ice algae from the Ross Sea polynya. Antarctic Research Series, 1998, , 139-146.	0.2	30
50	Regulation of algal blooms in Antarctic Shelf Waters by the release of iron from melting sea ice. Geophysical Research Letters, 1997, 24, 2515-2518.	4.0	301
51	Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 873-892.	1.4	96
52	Primary production in the subarctic Pacific Ocean: Project SUPER. Progress in Oceanography, 1993, 32, 101-135.	3.2	104
53	Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnology and Oceanography, 1993, 38, 495-508.	3.1	119
54	Iron and regenerated production: Evidence for biological iron recycling in two marine environments. Limnology and Oceanography, 1993, 38, 1242-1255.	3.1	119

#	Article	IF	CITATION
55	Impact of an atmospheric-oceanic disturbance on phytoplankton community dynamics in the North Pacific Central Gyre. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, 1305-1329.	1.5	89
56	Primary production in the deep blue sea. Deep-sea Research Part A, Oceanographic Research Papers, 1990, 37, 715-730.	1.5	65
57	Autotrophic production and elemental fluxes at $26 \hat{A}^{\circ} N$, $155 \hat{A}^{\circ} W$ in the North Pacific subtropical gyre. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 103-120.	1.5	48
58	Physiological characteristics and production of mixed layer and chlorophyll maximum phytoplankton populations in the Caribbean Sea and western Atlantic Ocean. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 1363-1377.	1.5	33
59	A comparison of nitrogen assimilation rates based on 15N uptake and autotrophic protein synthesis. Deep-sea Research Part A, Oceanographic Research Papers, 1985, 32, 85-95.	1.5	42
60	Primary productivity and particle fluxes on a transect of the equator at $153 \hat{A}^{\circ}W$ in the Pacific Ocean. Deep-sea Research Part A, Oceanographic Research Papers, 1984, 31, 1-11.	1.5	366
61	Estimates of phytoplankton N uptake based on ¹⁴ CO ₂ incorporation into protein. Limnology and Oceanography, 1983, 28, 177-185.	3.1	45