Romain Koszul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3873256/publications.pdf

Version: 2024-02-01

147801 106344 6,339 68 31 65 h-index citations g-index papers 91 91 91 7221 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization. Methods in Molecular Biology, 2022, 2301, 1 - 15 .	0.9	6
2	Metagenomes Binning Using Proximity-Ligation Data. Methods in Molecular Biology, 2022, 2301, 163-181.	0.9	3
3	Crosstalk between Hepatitis B Virus and the 3D Genome Structure. Viruses, 2022, 14, 445.	3.3	6
4	Extended sister-chromosome catenation leads to massive reorganization of the <i>E. coli</i> genome. Nucleic Acids Research, 2022, 50, 2635-2650.	14.5	18
5	Smc3 acetylation, Pds5 and Scc2 control the translocase activity that establishes cohesin-dependent chromatin loops. Nature Structural and Molecular Biology, 2022, 29, 575-585.	8.2	31
6	Sir3 mediates long-range chromosome interactions in budding yeast. Genome Research, 2021, 31, 411-425.	5.5	16
7	MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. ELife, 2021, 10, .	6.0	57
8	Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Molecular Cell, 2021, 81, 459-472.e10.	9.7	42
9	Closed and High-Quality Bacterial Genome Sequences of the Oligo-Mouse-Microbiota Community. Microbiology Resource Announcements, 2021, 10, .	0.6	4
10	Generation of gene-level resolution chromosome contact maps in bacteria and archaea. STAR Protocols, 2021, 2, 100512.	1.2	7
11	Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization. Communications Biology, 2021, 4, 104.	4.4	27
12	Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer <i>Adineta vaga</i> . Science Advances, 2021, 7, eabg4216.	10.3	30
13	Cohesin regulates homology search during recombinational DNA repair. Nature Cell Biology, 2021, 23, 1176-1186.	10.3	43
14	Perspectives on Chromosome Organization. Journal of Molecular Biology, 2020, 432, 635-637.	4.2	0
15	Computer vision for pattern detection in chromosome contact maps. Nature Communications, 2020, 11, 5795.	12.8	64
16	instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder. Genome Biology, 2020, 21, 148.	8.8	38
17	Chromosome organization by a conserved condensin-ParB system in the actinobacterium Corynebacterium glutamicum. Nature Communications, 2020, 11, 1485.	12.8	64
18	Regulation of Cohesin-Mediated Chromosome Folding by Eco1 and Other Partners. Molecular Cell, 2020, 77, 1279-1293.e4.	9.7	80

#	Article	IF	Citations
19	Serpentine: a flexible 2D binning method for differential Hi-C analysis. Bioinformatics, 2020, 36, 3645-3651.	4.1	19
20	MetaTOR: A Computational Pipeline to Recover High-Quality Metagenomic Bins From Mammalian Gut Proximity-Ligation (meta3C) Libraries. Frontiers in Genetics, 2019, 10, 753.	2.3	22
21	FACT mediates cohesin function on chromatin. Nature Structural and Molecular Biology, 2019, 26, 970-979.	8.2	43
22	Condensin-Mediated Chromosome Folding and Internal Telomeres Drive Dicentric Severing by Cytokinesis. Molecular Cell, 2019, 75, 131-144.e3.	9.7	24
23	Dynamic Processing of Displacement Loops during Recombinational DNA Repair. Molecular Cell, 2019, 73, 1255-1266.e4.	9.7	84
24	Multiscale Structuring of the E.Âcoli Chromosome by Nucleoid-Associated and Condensin Proteins. Cell, 2018, 172, 771-783.e18.	28.9	285
25	Generation of a Metagenomics Proximity Ligation 3C Library of a Mammalian Gut Microbiota. Methods in Enzymology, 2018, 612, 183-195.	1.0	7
26	Tridimensional infiltration of DNA viruses into the host genome shows preferential contact with active chromatin. Nature Communications, 2018, 9, 4268.	12.8	51
27	Kinetic Signature of Cooperativity in the Irreversible Collapse of a Polymer. Physical Review Letters, 2018, 121, 057801.	7.8	14
28	A Proximity Ligation-Based Method for Quantitative Measurement of D-Loop Extension in S. cerevisiae. Methods in Enzymology, 2018, 601, 27-44.	1.0	15
29	Characterizing meiotic chromosomes' structure and pairing using a designer sequence optimized for Hi . Molecular Systems Biology, 2018, 14, e8293.	7.2	63
30	3D organization of synthetic and scrambled chromosomes. Science, 2017, 355, .	12.6	116
31	Deep functional analysis of synll, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355, .	12.6	163
32	Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Science Advances, 2017, 3, e1602105.	10.3	110
33	Generation and Analysis of Chromosomal Contact Maps of Bacteria. Methods in Molecular Biology, 2017, 1624, 75-84.	0.9	3
34	Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cellÂcycle. EMBO Journal, 2017, 36, 2684-2697.	7.8	137
35	Proximity ligation scaffolding and comparison of two Trichoderma reesei strains genomes. Biotechnology for Biofuels, 2017, 10, 151.	6.2	31
36	A checkpoint control orchestrates the replication of the two chromosomes of <i>Vibrio cholerae</i> . Science Advances, 2016, 2, e1501914.	10.3	122

3

#	Article	IF	Citations
37	Beyond the bounds of evolution: Synthetic chromosomes… How and what for?. Comptes Rendus - Biologies, 2016, 339, 324-328.	0.2	5
38	Evidence for actin dual role in regulating chromosome organization and dynamics in yeast. Journal of Cell Science, 2016, 129, 681-92.	2.0	73
39	The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Research, 2016, 44, 245-255.	14.5	90
40	Generation and Analysis of Chromosomal Contact Maps of Yeast Species. Methods in Molecular Biology, 2016, 1361, 227-245.	0.9	16
41	Genome-wide replication landscape of Candida glabrata. BMC Biology, 2015, 13, 69.	3.8	16
42	Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures. FEBS Letters, 2015, 589, 2966-2974.	2.8	41
43	Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biology, 2015, 16, 206.	8.8	7 5
44	Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging. Molecular Cell, 2015, 59, 588-602.	9.7	245
45	Filling the gap: Micro-C accesses the nucleosomal fiber at 100–1000 bp resolution. Genome Biology, 2015, 16, 169.	8.8	4
46	Metagenome Analysis Exploiting High-Throughput Chromosome Conformation Capture (3C) Data. Trends in Genetics, 2015, 31, 673-682.	6.7	22
47	High-quality genome (re)assembly using chromosomal contact data. Nature Communications, 2014, 5, 5695.	12.8	142
48	Filling annotation gaps in yeast genomes using genome-wide contact maps. Bioinformatics, 2014, 30, 2105-2113.	4.1	36
49	Total Synthesis of a Functional Designer Eukaryotic Chromosome. Science, 2014, 344, 55-58.	12.6	486
50	Purification of G ₁ daughter cells from different <i>Saccharomycetes</i> species through an optimized centrifugal elutriation procedure. Yeast, 2014, 31, 159-166.	1.7	18
51	Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. ELife, 2014, 3, e03318.	6.0	154
52	Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature, 2013, 500, 453-457.	27.8	352
53	The Centenary of Janssens's Chiasmatype Theory. Genetics, 2012, 191, 309-317.	2.9	14
54	La Theorie de la Chiasmatypie. Genetics, 2012, 191, 319-346.	2.9	10

#	Article	IF	Citations
55	A Predictive Computational Model of the Dynamic 3D Interphase Yeast Nucleus. Current Biology, 2012, 22, 1881-1890.	3.9	149
56	Normalization of a chromosomal contact map. BMC Genomics, 2012, 13, 436.	2.8	190
57	Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections?. Trends in Cell Biology, 2009, 19, 716-724.	7.9	158
58	A prominent role for segmental duplications in modeling Eukaryotic genomes. Comptes Rendus - Biologies, 2009, 332, 254-266.	0.2	31
59	Real-Time Imaging of Meiotic Chromosomes in Saccharomyces cerevisiae. Methods in Molecular Biology, 2009, 558, 81-89.	0.9	6
60	Csm4, in Collaboration with Ndj1, Mediates Telomere-Led Chromosome Dynamics and Recombination during Yeast Meiosis. PLoS Genetics, 2008, 4, e1000188.	3.5	117
61	Segmental Duplications Arise from Pol32-Dependent Repair of Broken Forks through Two Alternative Replication-Based Mechanisms. PLoS Genetics, 2008, 4, e1000175.	3.5	161
62	Stability of Large Segmental Duplications in the Yeast Genome. Genetics, 2006, 172, 2211-2222.	2.9	50
63	Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO Journal, 2004, 23, 234-243.	7.8	192
64	Genome evolution in yeasts. Nature, 2004, 430, 35-44.	27.8	1,498
65	The complete mitochondrial genome sequence of the pathogenic yeastCandida(Torulopsis)glabrata. FEBS Letters, 2003, 534, 39-48.	2.8	68
66	Functional Partition of a Bacterial Chromosome Through the Interplay of Nucleoid Associated Proteins and Condensin. SSRN Electronic Journal, 0, , .	0.4	1
67	A deep dive into genome assemblies of non-vertebrate animals. , 0, 2, .		4
68	Chromosome-level genome assembly and annotation of two lineages of the ant Cataglyphis hispanica: stepping stones towards genomic studies of hybridogenesis and thermal adaptation in desert ants. , 0, 2, .		5