
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3873031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA. American Journal of Human Genetics, 2016, 98, 58-74.	6.2	248
2	A framework for assessing risks to children from exposure to environmental agents Environmental Health Perspectives, 2004, 112, 238-256.	6.0	93
3	Metagenomic Frameworks for Monitoring Antibiotic Resistance in Aquatic Environments. Environmental Health Perspectives, 2014, 122, 222-228.	6.0	89
4	Cadmium-induced Activation of Stress Signaling Pathways, Disruption of Ubiquitin-dependent Protein Degradation and Apoptosis in Primary Rat Sertoli Cell-Gonocyte Cocultures. Toxicological Sciences, 2008, 104, 385-396.	3.1	77
5	Organophosphate Pesticide Exposure and Work in Pome Fruit: Evidence forthe Take-Home Pesticide Pathway. Environmental Health Perspectives, 2006, 114, 999-1006.	6.0	64
6	Investigations of methylmercury-induced alterations in neurogenesis Environmental Health Perspectives, 2002, 110, 859-864.	6.0	59
7	Occupational exposure limit for silver nanoparticles: considerations on the derivation of a general health-based value. Nanotoxicology, 2016, 10, 945-956.	3.0	56
8	Essential Role of Extracellular Matrix (ECM) Overlay in Establishing the Functional Integrity of Primary Neonatal Rat Sertoli Cell/Gonocyte Co-cultures: An Improved In Vitro Model for Assessment of Male Reproductive Toxicity. Toxicological Sciences, 2005, 84, 378-393.	3.1	51
9	A System-Based Approach to Interpret Dose- and Time-Dependent Microarray Data: Quantitative Integration of Gene Ontology Analysis for Risk Assessment. Toxicological Sciences, 2006, 92, 560-577.	3.1	50
10	Metagenomic Profiling of Microbial Composition and Antibiotic Resistance Determinants in Puget Sound. PLoS ONE, 2012, 7, e48000.	2.5	50
11	A System-Based Comparison of Gene Expression Reveals Alterations in Oxidative Stress, Disruption of Ubiquitin-Proteasome System and Altered Cell Cycle Regulation after Exposure to Cadmium and Methylmercury in Mouse Embryonic Fibroblast. Toxicological Sciences, 2010, 114, 356-377.	3.1	49
12	A Biologically-Based Dose-Response Model for Developmental Toxicology. Risk Analysis, 1996, 16, 449-458.	2.7	48
13	Computational Models of Neocortical Neuronogenesis and Programmed Cell Death in the Developing Mouse, Monkey, and Human. Cerebral Cortex, 2007, 17, 2433-2442.	2.9	48
14	Arsenic- and cadmium-induced toxicogenomic response in mouse embryos undergoing neurulation. Toxicology and Applied Pharmacology, 2011, 250, 117-129.	2.8	45
15	Cadmium-Induced Differential Toxicogenomic Response in Resistant and Sensitive Mouse Strains Undergoing Neurulation. Toxicological Sciences, 2009, 107, 206-219.	3.1	44
16	<i>Para Niños Saludables</i> : A Community Intervention Trial to Reduce Organophosphate Pesticide Exposure in Children of Farmworkers. Environmental Health Perspectives, 2008, 116, 687-694.	6.0	43
17	Exposure monitoring of graphene nanoplatelets manufacturing workplaces. Inhalation Toxicology, 2016, 28, 281-291.	1.6	42
18	Improving in vitro Sertoli cell/gonocyte co-culture model for assessing male reproductive toxicity: Lessons learned from comparisons of cytotoxicity versus genomic responses to phthalates. Toxicology and Applied Pharmacology, 2009, 239, 325-336.	2.8	41

#	Article	IF	CITATIONS
19	FARME DB: a functional antibiotic resistance element database. Database: the Journal of Biological Databases and Curation, 2017, 2017, baw165.	3.0	40
20	Induction of the Cell Cycle Regulatory Gene p21 (Waf1, Cip1) Following Methylmercury Exposure in Vitro and in Vivo. Toxicology and Applied Pharmacology, 1999, 157, 203-212.	2.8	38
21	An expert consortium review of the EC-commissioned report "Alternative (Non-Animal) Methods for Cosmetics Testing: Current Status and Future Prospects – 2010â€: ALTEX: Alternatives To Animal Experimentation, 2011, 28, 183-209.	1.5	37
22	Cell Cycle Inhibition by Sodium Arsenite in Primary Embryonic Rat Midbrain Neuroepithelial Cells. Toxicological Sciences, 2006, 89, 475-484.	3.1	36
23	Variability in the take-home pathway: Farmworkers and non-farmworkers and their children. Journal of Exposure Science and Environmental Epidemiology, 2014, 24, 522-531.	3.9	36
24	Linking the oceans to public health: current efforts and future directions. Environmental Health, 2008, 7, S6.	4.0	35
25	Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology. Reproductive Toxicology, 2011, 32, 180-188.	2.9	35
26	Contribution of PCB exposure from fish consumption to total dioxin-like dietary exposure. Regulatory Toxicology and Pharmacology, 2004, 40, 125-135.	2.7	34
27	Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicology and Applied Pharmacology, 2015, 289, 240-250.	2.8	33
28	The role of diet in children's exposure to organophosphate pesticides. Environmental Research, 2016, 147, 133-140.	7.5	33
29	Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Applied and Environmental Microbiology, 2017, 83, .	3.1	33
30	Seasonal and occupational trends of five organophosphate pesticides in house dust. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 372-378.	3.9	33
31	Cadmium Induced p53-Dependent Activation of Stress Signaling, Accumulation of Ubiquitinated Proteins, and Apoptosis in Mouse Embryonic Fibroblast Cells. Toxicological Sciences, 2011, 120, 403-412.	3.1	32
32	Induction of Growth Arrest and DNA Damage-Inducible Genes Gadd45 and Gadd153 in Primary Rodent Embryonic Cells Following Exposure to Methylmercury. Toxicology and Applied Pharmacology, 1997, 147, 31-38.	2.8	31
33	The role of cell death during neocortical neurogenesis and synaptogenesis: implications from a computational model for the rat and mouse. Developmental Brain Research, 2004, 151, 43-54.	1.7	31
34	Computational models of ethanolâ€induced neurodevelopmental toxicity across species: Implications for risk assessment. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2008, 83, 1-11.	1.4	31
35	Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages. Nanotoxicology, 2015, 9, 336-343.	3.0	31
36	Urinary microRNAs as potential biomarkers of pesticide exposure. Toxicology and Applied Pharmacology, 2016, 312, 19-25.	2.8	31

#	Article	IF	CITATIONS
37	Short-term inhalation study of graphene oxide nanoplates. Nanotoxicology, 2018, 12, 224-238.	3.0	31
38	Methylmercury induced toxicogenomic response in C57 and SWV mouse embryos undergoing neural tube closure. Reproductive Toxicology, 2010, 30, 284-291.	2.9	30
39	Review of noncancer risk assessment: Applications of benchmark dose methods. Human and Ecological Risk Assessment (HERA), 1997, 3, 893-920.	3.4	28
40	Risk Estimation and Value-of-Information Analysis for Three Proposed Genetic Screening Programs for Chronic Beryllium Disease Prevention. Risk Analysis, 2000, 20, 87-100.	2.7	28
41	The magnitude of methylmercury-induced cytotoxicity and cell cycle arrest is p53-dependent. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 29-38.	1.6	28
42	Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways. Toxicology and Applied Pharmacology, 2008, 233, 389-403.	2.8	28
43	Characterization of organophosphate pesticides in urine and home environment dust in an agricultural community. Biomarkers, 2018, 23, 174-187.	1.9	27
44	Longitudinal, Seasonal, and Occupational Trends of Multiple Pesticides in House Dust. Environmental Health Perspectives, 2019, 127, 17003.	6.0	26
45	In vitro testicular toxicity models: Opportunities for advancement via biomedical engineering techniques. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 353-377.	1.5	26
46	Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Archives of Toxicology, 2018, 92, 1393-1405.	4.2	25
47	Blood Biochemical and Hematological Study after Subacute Intravenous Injection of Gold and Silver Nanoparticles and Coadministered Gold and Silver Nanoparticles of Similar Sizes. BioMed Research International, 2018, 2018, 1-10.	1.9	24
48	Neurobehavioral assessment of mice following repeated oral exposures to domoic acid during prenatal development. Neurotoxicology and Teratology, 2017, 64, 8-19.	2.4	23
49	Mode of silver clearance following 28-day inhalation exposure to silver nanoparticles determined from lung burden assessment including post-exposure observation periods. Archives of Toxicology, 2020, 94, 773-784.	4.2	23
50	FutureTox III: Bridges for Translation. Toxicological Sciences, 2017, 155, 22-31.	3.1	22
51	The presence of macrophages and inflammatory responses in an in vitro testicular co-culture model of male reproductive development enhance relevance to in vivo conditions. Toxicology in Vitro, 2016, 36, 210-215.	2.4	21
52	Differential epigenetic effects of chlorpyrifos and arsenic in proliferating and differentiating human neural progenitor cells. Reproductive Toxicology, 2016, 65, 212-223.	2.9	21
53	Developing the Regulatory Utility of the Exposome: Mapping Exposures for Risk Assessment through Lifestage Exposome Snapshots (LEnS). Environmental Health Perspectives, 2017, 125, 085003.	6.0	21
54	Simultaneous analysis of surface marker expression and cell cycle progression in human peripheral blood mononuclear cells. Journal of Immunological Methods, 2001, 256, 35-46.	1.4	20

#	Article	IF	CITATIONS
55	The application of benchmark dose methodology to data from prenatal developmental toxicity studies. Toxicology Letters, 1995, 82-83, 549-554.	0.8	17
56	p21WAF1/CIP1 Inhibits Cell Cycle Progression but Not G2/M-Phase Transition Following Methylmercury Exposure. Toxicology and Applied Pharmacology, 2002, 178, 117-125.	2.8	17
57	FutureTox IV Workshop Summary: <i>Predictive Toxicology for Healthy Children</i> . Toxicological Sciences, 2021, 180, 198-211.	3.1	15
58	Preparation of Rodent Testis Co ultures. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2013, 55, Unit 16.10.	1.1	14
59	A Toxicological Framework for the Prioritization of Children's Safe Product Act Data. International Journal of Environmental Research and Public Health, 2016, 13, 431.	2.6	14
60	Using primary organotypic mouse midbrain cultures to examine developmental neurotoxicity of silver nanoparticles across two genetic strains. Toxicology and Applied Pharmacology, 2018, 354, 215-224.	2.8	14
61	In vitro to in vivo benchmark dose comparisons to inform risk assessment of quantum dot nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1507.	6.1	14
62	A critical review of the analysis of dried blood spots for characterizing human exposure to inorganic targets using methods based on analytical atomic spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35, 2092-2112.	3.0	14
63	The use of dried blood spots for characterizing children's exposure to organic environmental chemicals. Environmental Research, 2021, 195, 110796.	7.5	14
64	A systemsâ€based approach to investigate dose―and timeâ€dependent methylmercuryâ€induced gene expression response in C57BL/6 mouse embryos undergoing neurulation. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2010, 89, 188-200.	1.4	13
65	Comparison of toxicogenomic responses to phthalate ester exposure in an organotypic testis co-culture model and responses observed in vivo. Reproductive Toxicology, 2015, 58, 149-159.	2.9	13
66	Characterizing the Neurodevelopmental Pesticide Exposome in a Children's Agricultural Cohort. International Journal of Environmental Research and Public Health, 2020, 17, 1479.	2.6	13
67	Human Health Exposure Analysis Resource (HHEAR): A model for incorporating the exposome into health studies. International Journal of Hygiene and Environmental Health, 2021, 235, 113768.	4.3	13
68	Embryonic toxicokinetic and dynamic differences underlying strain sensitivity to cadmium during neurulation. Reproductive Toxicology, 2010, 29, 279-285.	2.9	12
69	Lobar evenness of deposition/retention in rat lungs of inhaled silver nanoparticles: an approach for reducing animal use while maximizing endpoints. Particle and Fibre Toxicology, 2019, 16, 2.	6.2	12
70	A Case study on the utility of predictive toxicology tools in alternatives assessments for hazardous chemicals in children's consumer products. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 160-170.	3.9	12
71	Phthalate metabolism and kinetics in an in vitro model of testis development. Toxicology in Vitro, 2016, 32, 123-131.	2.4	11
72	Application of improved approach to evaluate a community intervention to reduce exposure of young children living in farmworker households to organophosphate pesticides. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 358-365.	3.9	11

ELAINE M FAUSTMAN

#	Article	IF	CITATIONS
73	Choosing remediation and waste management options at hazardous and radioactive waste sites. , 2002, 13, 39-58.		10
74	Changes in cell cycle parameters and cell number in the rat midbrain during organogenesis. Developmental Brain Research, 2003, 141, 117-128.	1.7	10
75	Re-evaluating blue mussel depuration rates in â€~Dynamics of the phycotoxin domoic acid: accumulation and excretion in two commercially important bivalves'. Journal of Applied Phycology, 2009, 21, 745-746.	2.8	10
76	Integrating genetic and toxicogenomic information for determining underlying susceptibility to developmental disorders. Birth Defects Research Part A: Clinical and Molecular Teratology, 2010, 88, 920-930.	1.6	10
77	Avoidable early life environmental exposures. Lancet Planetary Health, The, 2017, 1, e172-e173.	11.4	10
78	Melphalan, alone or conjugated to an FSH-β peptide, kills murine testicular cells inÂvitro and transiently suppresses murine spermatogenesis inÂvivo. Theriogenology, 2014, 82, 152-159.	2.1	9
79	Seasonal variation in cortisol biomarkers in Hispanic mothers living in an agricultural region. Biomarkers, 2015, 20, 299-305.	1.9	9
80	Potential frameworks to support evaluation of mechanistic data for developmental neurotoxicity outcomes: A symposium report. Neurotoxicology and Teratology, 2020, 78, 106865.	2.4	9
81	Variability in metagenomic samples from the Puget Sound: Relationship to temporal and anthropogenic impacts. PLoS ONE, 2018, 13, e0192412.	2.5	9
82	Modeling developmental processes in animals: applications in neurodevelopmental toxicology. Environmental Toxicology and Pharmacology, 2005, 19, 615-624.	4.0	8
83	Evaluation of the relationship between residential orchard density and dimethyl organophosphate pesticide residues in house dust. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 379-388.	3.9	6
84	A Model for Optimization of Biomarker Testing Frequency to Minimize Disease and Cost: Example of Beryllium Sensitization Testing. Risk Analysis, 2003, 23, 1211-1220.	2.7	5
85	Organophosphate Pesticide Exposure Among Pome and Non-Pome Farmworkers: A Subgroup Analysis of a Community Randomized Trial. Journal of Occupational and Environmental Medicine, 2009, 51, 500-509.	1.7	5
86	Stage-specific signaling pathways during murine testis development and spermatogenesis: A pathway-based analysis to quantify developmental dynamics. Reproductive Toxicology, 2015, 51, 31-39.	2.9	5
87	Characterization of 3D embryonic C57BL/6 and A/J mouse midbrain micromass in vitro culture systems for developmental neurotoxicity testing. Toxicology in Vitro, 2018, 48, 33-44.	2.4	5
88	The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chemical Research in Toxicology, 2019, 32, 952-968.	3.3	5
89	Sex-specific accumulation of silver nanoparticles in rat kidneys is not ovarian hormone regulated but elimination limited. NanoImpact, 2020, 20, 100255.	4.5	5
90	Using a biokinetic model to quantify and optimize cortisol measurements for acute and chronic environmental stress exposure during pregnancy. Journal of Exposure Science and Environmental Epidemiology, 2014, 24, 510-516.	3.9	4

#	Article	IF	CITATIONS
91	The Effects of Genotype × Phenotype Interactions on Transcriptional Response to Silver Nanoparticle Toxicity in Organotypic Cultures of Murine Tracheal Epithelial Cells. Toxicological Sciences, 2020, 173, 131-143.	3.1	4
92	<scp>Single ell</scp> profiling for advancing birth defects research and prevention. Birth Defects Research, 2021, 113, 546-559.	1.5	4
93	A systems-based computational model of alcohol's toxic effects on brain development. Alcohol Research, 2008, 31, 76-83.	1.0	4
94	Perfluorinated Carboxylic Acids with Increasing Carbon Chain Lengths Upregulate Amino Acid Transporters and Modulate Compensatory Response of Xenobiotic Transporters in HepaRG Cells. Drug Metabolism and Disposition, 2022, 50, 1396-1413.	3.3	4
95	Health Measurement Model—Bringing a Life Course Perspective to Health Measurement: The PRISM Model. Frontiers in Pediatrics, 2021, 9, 605932.	1.9	3
96	Comments on "An Approach for Modeling Noncancer Dose Responses with an Emphasis on Uncertainty" and "A Probabilistic Framework for the Reference Dose (Probabilistic RfD)". Risk Analysis, 1998, 18, 663-664.	2.7	2
97	Challenges in Defining Background Levels for Human and Ecological Risk Assessments. Human and Ecological Risk Assessment (HERA), 2003, 9, 1623-1632.	3.4	2
98	Anchoring a dynamic in vitro model of human neuronal differentiation to key processes of early brain development in vivo. Reproductive Toxicology, 2020, 91, 116-130.	2.9	2
99	Associations between extreme precipitation, drinking water, and protozoan acute gastrointestinal illnesses in four North American Great Lakes cities (2009–2014). Journal of Water and Health, 2022, 20, 849-862.	2.6	2
100	Risk Assessment and the Impact of Ecogenetics. , 2006, , 427-450.		1
101	The effects of genotype × phenotype interactions on silver nanoparticle toxicity in organotypic cultures of murine tracheal epithelial cells. Nanotoxicology, 2020, 14, 908-928.	3.0	1
102	The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1708.	6.1	1
103	Metals Induced Disruption of Ubiquitin Proteasome System, Activation of Stress Signaling and Apoptosis. , 2011, , 291-311.		1
104	Poster: Public health applications of metagenomic data using publicly available computing framework. , 2012, , .		0
105	Water Security: Integrating Lessons Learned for Water Quality, Quantity and Sustainability. , 0, , 121-130.		0
106	A Call to Include Indirect Effects of Marine Microplastics in Human Health Risk Assessments. Integrated Environmental Assessment and Management, 2019, 15, 819-820.	2.9	0
107	Experimental approaches to evaluate mechanisms of developmental toxicity. , 2011, , 10-44.		0