
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/387286/publications.pdf Version: 2024-02-01

CUO-PINC SHI

#	Article	IF	CITATIONS
1	Eosinophils protect pressure overload- and β-adrenoreceptor agonist-induced cardiac hypertrophy. Cardiovascular Research, 2023, 119, 195-212.	3.8	5
2	Functional Diversities of Regulatory T Cells in the Context of Cancer Immunotherapy. Frontiers in Immunology, 2022, 13, 833667.	4.8	14
3	Allergic asthma is a risk factor for human cardiovascular diseases. , 2022, 1, 417-430.		8
4	Cathepsin K Deficiency Prevented Kidney Damage and Dysfunction in Response to 5/6 Nephrectomy Injury in Mice With or Without Chronic Stress. Hypertension, 2022, 79, 1713-1723.	2.7	8
5	Eosinophils Protect Mice From Angiotensin-II Perfusion–Induced Abdominal Aortic Aneurysm. Circulation Research, 2021, 128, 188-202.	4.5	33
6	Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 659666.	3.7	19
7	Deficiency of immunoglobulin E protects mice from experimental abdominal aortic aneurysms. FASEB Journal, 2020, 34, 3091-3104.	0.5	9
8	Adipocytes promote interleukin-18 binding to its receptors during abdominal aortic aneurysm formation in mice. European Heart Journal, 2020, 41, 2456-2468.	2.2	42
9	Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB Journal, 2020, 34, 9755-9770.	0.5	16
10	Deficiency of cysteinyl cathepsin K suppresses the development of experimental intimal hyperplasia in response to chronic stress. Journal of Hypertension, 2020, 38, 1514-1524.	0.5	13
11	Therapeutic potential of tricarboxylic acid cycle metabolite itaconate in cardiovascular diseases. EBioMedicine, 2020, 59, 102938.	6.1	10
12	Eosinophils improve cardiac function after myocardial infarction. Nature Communications, 2020, 11, 6396.	12.8	68
13	Reduced Nhe1 (Na ⁺ -H ⁺ Exchanger-1) Function Protects ApoE-Deficient Mice From Ang II (Angiotensin II)–Induced Abdominal Aortic Aneurysms. Hypertension, 2020, 76, 87-100.	2.7	7
14	Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. , 2020, 213, 107587.		216
15	Cathepsin B deficiency ameliorates liver lipid deposition, inflammatory cell infiltration, and fibrosis after diet-induced nonalcoholic steatohepatitis. Translational Research, 2020, 222, 28-40.	5.0	18
16	Cysteinyl cathepsins in cardiovascular diseases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140360.	2.3	23
17	lgE Contributes to Atherosclerosis and Obesity by Affecting Macrophage Polarization, Macrophage Protein Network, and Foam Cell Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 597-610.	2.4	41
18	Abstract 15122: Il18 Uses Both Il18 Receptor and Na-cl Co-transporter to Support Islet β Cell Proliferation and Insulin Secretion. Circulation, 2020, 142, .	1.6	0

#	Article	IF	CITATIONS
19	Cathepsin S Deficiency Mitigated Chronic Stress–Related Neointimal Hyperplasia in Mice. Journal of the American Heart Association, 2019, 8, e011994.	3.7	41
20	Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Reports, 2019, 28, 792-803.e4.	6.4	45
21	Cathepsin S-Mediated Negative Regulation of Wnt5a/SC35 Activation Contributes to Ischemia-Induced Neovascularization in Aged Mice. Circulation Journal, 2019, 83, 2537-2546.	1.6	6
22	Differential Roles of Cysteinyl Cathepsins in TGF-β Signaling and Tissue Fibrosis. IScience, 2019, 19, 607-622.	4.1	30
23	Na+-H+ exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nature Communications, 2019, 10, 3978.	12.8	25
24	Cathepsin K Knockout Exacerbates Haemorrhagic Transformation Induced by Recombinant Tissue Plasminogen Activator After Focal Cerebral Ischaemia in Mice. Cellular and Molecular Neurobiology, 2019, 39, 823-831.	3.3	11
25	Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1690-1700.	3.8	14
26	Mast cell-deficiency protects mice from streptozotocin-induced diabetic cardiomyopathy. Translational Research, 2019, 208, 1-14.	5.0	16
27	Calcium-activated chloride channel regulator 1 (CLCA1): More than a regulator of chloride transport and mucus production. World Allergy Organization Journal, 2019, 12, 100077.	3.5	31
28	Cathepsin K-deficiency impairs mouse cardiac function after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2019, 127, 44-56.	1.9	19
29	IL (Interleukin)-33 Suppresses Abdominal Aortic Aneurysm by Enhancing Regulatory T-Cell Expansion and Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 446-458.	2.4	43
30	Deficiency of mouse mast cell protease 4 mitigates cardiac dysfunctions in mice after myocardium infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1170-1181.	3.8	7
31	Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nature Reviews Cardiology, 2018, 15, 351-370.	13.7	136
32	Cathepsin <scp>K</scp> activity controls cardiotoxinâ€induced skeletal muscle repair in mice. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 160-175.	7.3	32
33	Plasma Cystatin B Association With Abdominal Aortic Aneurysms and Need for Later Surgical Repair: A Sub-study of the VIVA Trial. European Journal of Vascular and Endovascular Surgery, 2018, 56, 826-832.	1.5	8
34	Cathepsin K Deficiency Ameliorates Systemic Lupus Erythematosus-like Manifestations in <i>Faslpr</i> Mice. Journal of Immunology, 2017, 198, 1846-1854.	0.8	21
35	CD74 Deficiency Mitigates Systemic Lupus Erythematosus–like Autoimmunity and Pathological Findings in Mice. Journal of Immunology, 2017, 198, 2568-2577.	0.8	13
36	Tilting at the tilted protease balance in arterial aneurysmal disease. Cardiovascular Research, 2017, 113, 1279-1281.	3.8	4

#	Article	IF	CITATIONS
37	Toll-like receptor 7 deficiency protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Scientific Reports, 2017, 7, 847.	3.3	20
38	Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease. Journal of Zhejiang University: Science B, 2017, 18, 685-695.	2.8	6
39	Cathepsin K Deficiency Prevents the Aggravated Vascular Remodeling Response to Flow Cessation in ApoE-/- Mice. PLoS ONE, 2016, 11, e0162595.	2.5	9
40	Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3Kâ^Akt/p-HDAC6 Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1549-1557.	2.4	70
41	Interaction between allergic asthma and atherosclerosis. Translational Research, 2016, 174, 5-22.	5.0	17
42	Asthma Associates With Human Abdominal Aortic Aneurysm and Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 570-578.	2.4	20
43	Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice. Translational Research, 2016, 171, 1-16.	5.0	15
44	Allergic Lung Inflammation Aggravates Angiotensin II–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 69-77.	2.4	29
45	Defective circulating CD4+LAP+ regulatory T cells in patients with dilated cardiomyopathy. Journal of Leukocyte Biology, 2015, 97, 797-805.	3.3	18
46	Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nature Medicine, 2015, 21, 820-826.	30.7	81
47	Plasma cytokine levels and risks of abdominal aortic aneurysms: A population-based prospective cohort study. Annals of Medicine, 2015, 47, 245-252.	3.8	21
48	Cathepsin K knockout alleviates agingâ€induced cardiac dysfunction. Aging Cell, 2015, 14, 345-351.	6.7	41
49	Mast cells in human and experimental cardiometabolic diseases. Nature Reviews Cardiology, 2015, 12, 643-658.	13.7	95
50	Leptin Deficiency Shifts Mast Cells toward Anti-Inflammatory Actions and Protects Mice from Obesity and Diabetes by Polarizing M2 Macrophages. Cell Metabolism, 2015, 22, 1045-1058.	16.2	107
51	Deficiency of FcïµR1 Increases Body Weight Gain but Improves Glucose Tolerance in Diet-Induced Obese Mice. Endocrinology, 2015, 156, 4047-4058.	2.8	5
52	Regulatory T cells in human and angiotensin II-induced mouse abdominal aortic aneurysms. Cardiovascular Research, 2015, 107, 98-107.	3.8	47
53	lgE actions on <scp>CD</scp> 4 ⁺ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Molecular Medicine, 2014, 6, 952-969.	6.9	76
54	Cathepsin K-mediated notch1 activation contributes to neovascularization in response to hypoxia. Nature Communications, 2014, 5, 3838.	12.8	67

#	Article	IF	CITATIONS
55	Cathepsin K Activity Controls Injury-Related Vascular Repair in Mice. Hypertension, 2014, 63, 607-615.	2.7	46
56	Renin inhibition reduces atherosclerotic plaque neovessel formation and regresses advanced atherosclerotic plaques. Atherosclerosis, 2014, 237, 739-747.	0.8	27
57	Pharmaceutical stabilization of mast cells attenuates experimental atherogenesis in low-density lipoprotein receptor-deficient mice. Atherosclerosis, 2013, 229, 304-309.	0.8	24
58	Plasma levels of cathepsins L, K, and V and risks of abdominal aortic aneurysms: A randomized population-based study. Atherosclerosis, 2013, 230, 100-105.	0.8	34
59	Cathepsin K Knockout Mitigates High-Fat Diet–Induced Cardiac Hypertrophy and Contractile Dysfunction. Diabetes, 2013, 62, 498-509.	0.6	77
60	Cathepsin S-mediated fibroblast trans-differentiation contributes to left ventricular remodelling after myocardial infarction. Cardiovascular Research, 2013, 100, 84-94.	3.8	50
61	Mechanisms With Clinical Implications for Atrial Fibrillation–Associated Remodeling: Cathepsin K Expression, Regulation, and Therapeutic Target and Biomarker. Journal of the American Heart Association, 2013, 2, e000503.	3.7	24
62	Cathepsin K Knockout Alleviates Pressure Overload–Induced Cardiac Hypertrophy. Hypertension, 2013, 61, 1184-1192.	2.7	43
63	Mast Cells in Abdominal Aortic Aneurysms. Current Vascular Pharmacology, 2013, 11, 314-326.	1.7	18
64	Cathepsin K Deficiency Reduces Elastase Perfusion–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 15-23.	2.4	89
65	Deficiency of cathepsin S attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Cardiovascular Research, 2012, 96, 401-410.	3.8	97
66	Role for Cysteine Protease Cathepsins in Heart Disease. Circulation, 2012, 125, 1551-1562.	1.6	133
67	Different Roles of Mast Cells in Obesity and Diabetes: Lessons from Experimental Animals and Humans. Frontiers in Immunology, 2012, 3, 7.	4.8	47
68	Interleukin-17A Contributes to Myocardial Ischemia/Reperfusion Injury by Regulating Cardiomyocyte Apoptosis and Neutrophil Infiltration. Journal of the American College of Cardiology, 2012, 59, 420-429.	2.8	250
69	Plasma Cathepsin S and Cystatin C Levels and Risk of Abdominal Aortic Aneurysm: A Randomized Population–Based Study. PLoS ONE, 2012, 7, e41813.	2.5	46
70	Impaired Thymic Export and Apoptosis Contribute to Regulatory T-Cell Defects in Patients with Chronic Heart Failure. PLoS ONE, 2011, 6, e24272.	2.5	27
71	Inhibition of mineralocorticoid receptor is a renoprotective effect of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin. Journal of Hypertension, 2011, 29, 542-552.	0.5	23
72	Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. , 2011, 131, 338-350.		53

#	Article	IF	CITATIONS
73	Cathepsin L Activity Is Essential to Elastase Perfusion–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2500-2508.	2.4	71
74	IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe–/– mice. Journal of Clinical Investigation, 2011, 121, 3564-3577.	8.2	149
75	Deficiency of Antigen-Presenting Cell Invariant Chain Reduces Atherosclerosis in Mice. Circulation, 2010, 122, 808-820.	1.6	76
76	Cystatin C Deficiency Promotes Inflammation in Angiotensin II–Induced Abdominal Aortic Aneurisms in Atherosclerotic Mice. American Journal of Pathology, 2010, 177, 456-463.	3.8	53
77	Cystatin C Deficiency Promotes Epidermal Dysplasia in K14-HPV16 Transgenic Mice. PLoS ONE, 2010, 5, e13973.	2.5	24
78	Arterial and Aortic Valve Calcification Abolished by Elastolytic Cathepsin S Deficiency in Chronic Renal Disease. Circulation, 2009, 119, 1785-1794.	1.6	272
79	Usefulness of Serum Cathepsin L as an Independent Biomarker in Patients With Coronary Heart Disease. American Journal of Cardiology, 2009, 103, 476-481.	1.6	46
80	Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine, 2009, 15, 940-945.	30.7	663
81	The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature, 2008, 456, 658-662.	27.8	538
82	Superoxide-Dependent Cathepsin Activation Is Associated with Hypertensive Myocardial Remodeling and Represents a Target for Angiotensin II Type 1 Receptor Blocker Treatment. American Journal of Pathology, 2008, 173, 358-369.	3.8	55
83	Deficiency and Inhibition of Cathepsin K Reduce Body Weight Gain and Increase Glucose Metabolism in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2202-2208.	2.4	78
84	Role of cathepsin C in elastase-induced mouse abdominal aortic aneurysms. Future Cardiology, 2007, 3, 591-593.	1.2	21
85	Optical Visualization of Cathepsin K Activity in Atherosclerosis With a Novel, Protease-Activatable Fluorescence Sensor. Circulation, 2007, 115, 2292-2298.	1.6	241
86	Cathepsin L Deficiency Reduces Diet-Induced Atherosclerosis in Low-Density Lipoprotein Receptor–Knockout Mice. Circulation, 2007, 115, 2065-2075.	1.6	120
87	Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1479-H1486.	3.2	104
88	Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nature Medicine, 2007, 13, 719-724.	30.7	379
89	Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. Journal of Clinical Investigation, 2007, 117, 3359-3368.	8.2	209
90	Localization of Cysteine Protease, Cathepsin S, to the Surface of Vascular Smooth Muscle Cells by Association with Integrin ανÎ23. American Journal of Pathology, 2006, 168, 685-694.	3.8	74

#	Article	IF	CITATIONS
91	Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis, 2006, 184, 302-311.	0.8	187
92	Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis, 2006, 186, 411-419.	0.8	108
93	Elastolytic Cathepsin Induction/Activation System Exists in Myocardium and Is Upregulated in Hypertensive Heart Failure. Hypertension, 2006, 48, 979-987.	2.7	87
94	Comprehensive Transcriptome of Proteases and Protease Inhibitors in Vascular Cells. Stroke, 2006, 37, 537-541.	2.0	16
95	Cathepsin S Controls Angiogenesis and Tumor Growth via Matrix-derived Angiogenic Factors. Journal of Biological Chemistry, 2006, 281, 6020-6029.	3.4	229
96	Cutting Edge: Deficiency of Macrophage Migration Inhibitory Factor Impairs Murine Airway Allergic Responses. Journal of Immunology, 2006, 177, 5779-5784.	0.8	33
97	Cystatin C Deficiency Increases Elastic Lamina Degradation and Aortic Dilatation in Apolipoprotein E–Null Mice. Circulation Research, 2005, 96, 368-375.	4.5	144
98	Lysosomal Cysteine Proteases in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1359-1366.	2.4	350
99	Deficiency of cathepsin S reduces atherosclerosis in LDL receptor–deficient mice. Journal of Clinical Investigation, 2003, 111, 897-906.	8.2	161
100	Deficiency of cathepsin S reduces atherosclerosis in LDL receptor–deficient mice. Journal of Clinical Investigation, 2003, 111, 897-906.	8.2	289
101	The Transcription Factor Early Growth-response Factor 1 Modulates Tumor Necrosis Factor- α , Immunoglobulin E, and Airway Responsiveness in Mice. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 778-785.	5.6	46
102	Role for Cathepsin F in Invariant Chain Processing and Major Histocompatibility Complex Class II Peptide Loading by Macrophages. Journal of Experimental Medicine, 2000, 191, 1177-1186.	8.5	216
103	Cathepsin S Controls the Trafficking and Maturation of Mhc Class II Molecules in Dendritic Cells. Journal of Cell Biology, 1999, 147, 775-790.	5.2	210
104	Cathepsin S Required for Normal MHC Class II Peptide Loading and Germinal Center Development. Immunity, 1999, 10, 197-206.	14.3	486
105	Cystatin C deficiency in human atherosclerosis and aortic aneurysms. Journal of Clinical Investigation, 1999, 104, 1191-1197.	8.2	397
106	Human Cathepsin F. Journal of Biological Chemistry, 1998, 273, 32000-32008.	3.4	136
107	EMERGING ROLES FOR CYSTEINE PROTEASES IN HUMAN BIOLOGY. Annual Review of Physiology, 1997, 59, 63-88.	13.1	715
108	Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Letters, 1995, 357, 129-134.	2.8	151

#	Article	IF	CITATIONS
109	Pathogenesis of aortic aneurysms. , 0, , 227-246.		1