
Leo M Condron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3871774/publications.pdf Version: 2024-02-01

LEO M CONDRON

#	Article	IF	CITATIONS
1	Nitrogen fertilization effects on soil phosphorus dynamics under a grass-pasture system. Nutrient Cycling in Agroecosystems, 2022, 124, 227-246.	2.2	8
2	Sediment and water-column phosphorus chemistry in streams at baseflow across varying catchment geologies. Inland Waters, 2022, 12, 510-525.	2.2	0
3	Grassland plant and invertebrate species richness increases from mowing are mediated by impacts on soil chemistry. Basic and Applied Ecology, 2022, 63, 152-163.	2.7	2
4	Investigating the relationships between soil acidity and phosphorus fractions in high country farmland of New Zealand's South Island. Soil Research, 2021, 59, 463-471.	1.1	4
5	A rapid fractionation method for assessing key soil phosphorus parameters in agroecosystems. Geoderma, 2021, 385, 114893.	5.1	19
6	Sediment phosphorus buffering in streams at baseflow: A metaâ€analysis. Journal of Environmental Quality, 2021, 50, 287-311.	2.0	24
7	Impact of grassland afforestation with contrasting tree species on soil phosphorus fractions and alkaline phosphatase gene communities. Soil Biology and Biochemistry, 2021, 159, 108274.	8.8	29
8	Long-term atmospheric carbon dioxide enrichment decreases soil phosphorus availability in a grazed temperate pasture. Geoderma, 2020, 378, 114621.	5.1	8
9	Soybean (Glycine max (L.) Merrill) intercropping with reduced nitrogen input influences rhizosphere phosphorus dynamics and phosphorus acquisition of sugarcane (Saccharum officinarum). Biology and Fertility of Soils, 2020, 56, 1063-1075.	4.3	19
10	Soil microbial diversity in adjacent forest systems – contrasting native, old growth kauri (Agathis) Tj ETQq0 0 96, .	0 rgBT /Ov 2.7	verlock 10 Tf 5 15
11	Role of Organic Anions and Phosphatase Enzymes in Phosphorus Acquisition in the Rhizospheres of Legumes and Grasses Grown in a Low Phosphorus Pasture Soil. Plants, 2020, 9, 1185.	3.5	26
12	Soil Phosphorus Modeling for Modern Agriculture Requires Balance of Science and Practicality: A Perspective. Journal of Environmental Quality, 2019, 48, 1281-1294.	2.0	20
13	Impacts of long-term plant residue management on soil organic matter quality, Pseudomonas community structure and disease suppressiveness. Soil Biology and Biochemistry, 2019, 135, 396-406.	8.8	22
14	Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma, 2019, 349, 36-44.	5.1	72
15	Mass balance assessment of phosphorus dynamics in a fertilizer trial with 57Âyears of superphosphate application under irrigated grazed pasture. Nutrient Cycling in Agroecosystems, 2019, 114, 33-44.	2.2	10
16	Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. Science of the Total Environment, 2019, 669, 1011-1018.	8.0	89
17	The error in stream sediment phosphorus fractionation and sorption properties effected by drying pretreatments. Journal of Soils and Sediments, 2019, 19, 1587-1597.	3.0	18
18	Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil. Geoderma, 2018, 321, 164-172.	5.1	44

LEO M CONDRON

#	Article	IF	CITATIONS
19	Plant biomass management impacts on short-term soil phosphorus dynamics in a temperate grassland. Biology and Fertility of Soils, 2018, 54, 397-409.	4.3	17
20	Phosphorus speciation in a long-term manure-amended soil profile – Evidence from wet chemical extraction, 31P-NMR and P K-edge XANES spectroscopy. Geoderma, 2018, 322, 19-27.	5.1	61
21	Validating novel oligonucleotide primers targeting three classes of bacterial non-specific acid phosphatase genes in grassland soils. Plant and Soil, 2018, 427, 39-51.	3.7	24
22	Impacts of long-term plant biomass management on soil phosphorus under temperate grassland. Plant and Soil, 2018, 427, 163-174.	3.7	21
23	Non-host larvae negatively impact persistence of the entomopathogen Beauveria bassiana in soil. Journal of Invertebrate Pathology, 2018, 156, 19-28.	3.2	4
24	Effect of land use and soil organic matter quality on the structure and function of microbial communities in pastoral soils: Implications for disease suppression. PLoS ONE, 2018, 13, e0196581.	2.5	34
25	Accumulation and distribution of phosphorus in the soil profile under fertilized grazed pasture. Agriculture, Ecosystems and Environment, 2017, 239, 228-235.	5.3	58
26	Chemical nature of residual phosphorus in Andisols. Geoderma, 2016, 271, 27-31.	5.1	39
27	Challenges and opportunities in harnessing soil disease suppressiveness for sustainable pasture production. Soil Biology and Biochemistry, 2016, 95, 100-111.	8.8	33
28	Research and Application of Biochar in New Zealand. SSSA Special Publication Series, 2015, , 423-443.	0.2	2
29	Oxygen isotopes of phosphate and soil phosphorus cycling across a 6500 year chronosequence under lowland temperate rainforest. Geoderma, 2015, 257-258, 14-21.	5.1	39
30	Using organic phosphorus to sustain pasture productivity: A perspective. Geoderma, 2014, 221-222, 11-19.	5.1	111
31	Mobilisation of recalcitrant soil nutrient fractions supports foliar nitrogen to phosphorus homeostasis in a seabird soil. Plant and Soil, 2014, 385, 77-86.	3.7	8
32	Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biology and Biochemistry, 2014, 77, 261-267.	8.8	137
33	Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 2014, 50, 169-178.	4.3	118
34	A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 2013, 3, 275-293.	3.0	663
35	Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Applied Soil Ecology, 2012, 61, 40-48.	4.3	69
36	Investigation of organic anions in tree root exudates and rhizosphere microbial communities using in situ and destructive sampling techniques. Plant and Soil, 2012, 359, 149-163.	3.7	20

LEO M CONDRON

#	Article	IF	CITATIONS
37	A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant and Soil, 2012, 353, 73-84.	3.7	136
38	Effects of long-term grassland management on the chemical nature and bioavailability of soil phosphorus. Biology and Fertility of Soils, 2012, 48, 607-611.	4.3	21
39	Biochar adsorbed ammonia is bioavailable. Plant and Soil, 2012, 350, 57-69.	3.7	371
40	Biochar Incorporation into Pasture Soil Suppresses in situ Nitrous Oxide Emissions from Ruminant Urine Patches. Journal of Environmental Quality, 2011, 40, 468-476.	2.0	233
41	Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 2011, 77, 600-610.	2.7	316
42	Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biology and Biochemistry, 2011, 43, 1341-1349.	8.8	54
43	In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus) Tj ETQq1 1 0.78	4314 rgB⊺ 4.2	「/Qyerlock]
44	Modelling arsenic toxicity in wheat: Simultaneous application of diffusive gradients in thin films to arsenic and phosphorus in soil. Environmental Pollution, 2011, 159, 2996-3002.	7.5	12
45	Revisiting the fundamentals of phosphorus fractionation of sediments and soils. Journal of Soils and Sediments, 2011, 11, 830-840.	3.0	221
46	Biochar and the Nitrogen Cycle: Introduction. Journal of Environmental Quality, 2010, 39, 1218-1223.	2.0	346
47	Phosphorus and Sulphur Cycling in Terrestrial Ecosystems. , 2007, , 65-92.		31
48	Effect of Green Manure Addition on Soil Organic Phosphorus Mineralisation. Nutrient Cycling in Agroecosystems, 2005, 73, 181-189.	2.2	58
49	Extraction of soil organic phosphorus. Talanta, 2005, 66, 294-306.	5.5	345
50	Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system. Biology and Fertility of Soils, 2003, 39, 65-73.	4.3	27
51	The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31 P NMR spectroscopy. Organic Geochemistry, 2003, 34, 1199-1210.	1.8	199
52	Phosphorus-31 Nuclear Magnetic Resonance Spectral Assignments of Phosphorus Compounds in Soil NaOH–EDTA Extracts. Soil Science Society of America Journal, 2003, 67, 497.	2.2	89