Zhiping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3870876/publications.pdf

Version: 2024-02-01

48 7,167 31 47
papers citations h-index g-index

49 49 49 8608 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Large-area perovskite films for PV applications: A perspective from nucleation and crystallization. Journal of Energy Chemistry, 2021, 59, 626-641.	12.9	11
2	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	16.0	81
3	Advances in Phase Stability of Cesium Lead Halide Perovskites. Solar Rrl, 2020, 4, 2000495.	5.8	13
4	Chargeâ€Carrier Trapping and Radiative Recombination in Metal Halide Perovskite Semiconductors. Advanced Functional Materials, 2020, 30, 2004312.	14.9	67
5	Thermal stability of CH3NH3PblxCl3-x versus [HC(NH2)2]0.83Cs0.17Pbl2.7Br0.3 perovskite films by X-ray photoelectron spectroscopy. Applied Surface Science, 2020, 513, 145596.	6.1	13
6	Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy and Environmental Science, 2020, 13, 1776-1787.	30.8	87
7	Fabrication of Efficient and Stable CsPbl ₃ Perovskite Solar Cells through Cation Exchange Process. Advanced Energy Materials, 2019, 9, 1901685.	19.5	101
8	Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571, 245-250.	27.8	1,103
9	Low cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 5235-5243.	5.5	50
10	Chargeâ€Carrier Dynamics, Mobilities, and Diffusion Lengths of 2D–3D Hybrid Butylammonium–Cesium–Formamidinium Lead Halide Perovskites. Advanced Functional Materials, 2019, 29, 1902656.	14.9	45
11	Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1185-1191.	8.0	31
12	Degradation Kinetics of Inverted Perovskite Solar Cells. Scientific Reports, 2018, 8, 5977.	3.3	44
13	Hybrid Perovskites: Prospects for Concentrator Solar Cells. Advanced Science, 2018, 5, 1700792.	11.2	76
14	Impact of Bi ³⁺ Heterovalent Doping in Organic–Inorganic Metal Halide Perovskite Crystals. Journal of the American Chemical Society, 2018, 140, 574-577.	13.7	181
15	Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices. ACS Energy Letters, 2018, 3, 1233-1240.	17.4	54
16	Insights Into the Microscopic and Degradation Processes in Hybrid Perovskite Solar Cells Using Noise Spectroscopy. Solar Rrl, 2018, 2, 1700173.	5.8	13
17	Efficient and Stable Perovskite Solar Cells Using Lowâ€Cost Anilineâ€Based Enamine Holeâ€Transporting Materials. Advanced Materials, 2018, 30, e1803735.	21.0	68
18	The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films. Advanced Materials, 2018, 30, e1804506.	21.0	156

#	Article	IF	Citations
19	Fractional deviations in precursor stoichiometry dictate the properties, performance and stability of perovskite photovoltaic devices. Energy and Environmental Science, 2018, 11, 3380-3391.	30.8	125
20	Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442-1446.	12.6	1,221
21	High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nature Energy, 2018, 3, 855-861.	39.5	180
22	Layered Mixed Tin–Lead Hybrid Perovskite Solar Cells with High Stability. ACS Energy Letters, 2018, 3, 2246-2251.	17.4	64
23	Carbazole-based enamine: Low-cost and efficient hole transporting material for perovskite solar cells. Nano Energy, 2017, 32, 551-557.	16.0	97
24	Controlling Nucleation and Growth of Metal Halide Perovskite Thin Films for Highâ€Efficiency Perovskite Solar Cells. Small, 2017, 13, 1602808.	10.0	36
25	Solution-Processed Cesium Hexabromopalladate(IV), Cs ₂ PdBr ₆ , for Optoelectronic Applications. Journal of the American Chemical Society, 2017, 139, 6030-6033.	13.7	189
26	Efficient and Airâ€Stable Mixedâ€Cation Lead Mixedâ€Halide Perovskite Solar Cells with nâ€Doped Organic Electron Extraction Layers. Advanced Materials, 2017, 29, 1604186.	21.0	237
27	Crystallization Kinetics and Morphology Control of Formamidinium–Cesium Mixedâ€Cation Lead Mixedâ€Halide Perovskite via Tunability of the Colloidal Precursor Solution. Advanced Materials, 2017, 29, 1607039.	21.0	263
28	Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 462-473.	6.7	35
29	Monolithic Wide Band Gap Perovskite/Perovskite Tandem Solar Cells with Organic Recombination Layers. Journal of Physical Chemistry C, 2017, 121, 27256-27262.	3.1	40
30	Nearâ€Infrared and Shortâ€Wavelength Infrared Photodiodes Based on Dye–Perovskite Composites. Advanced Functional Materials, 2017, 27, 1702485.	14.9	59
31	Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, .	39.5	1,169
32	A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358, 1192-1197.	12.6	554
33	Constructing Nanostructured Donor/Acceptor Bulk Heterojunctions via Interfacial Templates for Efficient Organic Photovoltaics. ACS Applied Materials & Efficient Organic Photovoltaics. ACS Applied Materials & Efficient Organic Photovoltaics.	8.0	5
34	Room‶emperature Atomic Layer Deposition of Al ₂ O ₃ : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells. ChemSusChem, 2016, 9, 3401-3406.	6.8	76
35	Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Hole†Transporter. Advanced Materials Interfaces, 2016, 3, 1600571.	3.7	105
36	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-2901.	30.8	372

#	Article	IF	CITATIONS
37	Fabrication of carbon nanotube hybrid films as transparent electrodes for small-molecule photovoltaic cells. RSC Advances, 2016, 6, 25062-25069.	3 . 6	10
38	Synthesis of Novel Push–Pull Chromophores based on <i>N</i> -Ethylcarbazole for Vacuum Deposition Processed Organic Photovoltaics. Chemistry Letters, 2015, 44, 958-960.	1.3	5
39	Understanding Device-Structure-Induced Variations in Open-Circuit Voltage for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 10814-10822.	8.0	2
40	Efficiency limit analysis of organic solar cells: model simulation based on vanadyl phthalocyanine/C60planar junction cell. Japanese Journal of Applied Physics, 2014, 53, 01AB12.	1.5	6
41	Templating Effects in Molecular Growth of Blended Films for Efficient Small-Molecule Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6369-6377.	8.0	28
42	Structural influences on charge carrier dynamics for small-molecule organic photovoltaics. Journal of Applied Physics, 2014, 116, 013105.	2.5	6
43	Role of Nitrogen in the Formation of $\frac{CN}{x}$ Films by Pulsed Laser Deposition. IEEE Transactions on Plasma Science, 2012, 40, 1815-1819.	1.3	4
44	Growth of preferentially-oriented AlN films on amorphous substrate by pulsed laser deposition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3007-3011.	2.1	16
45	Fabrication of DLC films by pulsed ion beam ablation in a dense plasma focus device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 4169-4173.	2.1	28
46	Preparation of silicon carbide film by a plasma focus device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 7179-7182.	2.1	31
47	Self-assembled 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites for stable and efficient solar cells. , 0, , .		7
48	Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. , 0, , .		0