Julio Vera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3868717/publications.pdf

Version: 2024-02-01

105	0.007	136950	197818
125	3,327	32	49
papers	citations	h-index	g-index
136	136	136	4800
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clinical determinants of long-term survival in metastatic uveal melanoma. Cancer Immunology, Immunotherapy, 2022, 71, 1467-1477.	4.2	10
2	A disease networkâ€based deep learning approach for characterizing melanoma. International Journal of Cancer, 2022, 150, 1029-1044.	5.1	16
3	Artificial intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted Therapy, 2022, 7, 156.	17.1	77
4	Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy. Theranostics, 2021, 11, 1412-1428.	10.0	8
5	The IKZF1–IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages. Cancer Immunology Research, 2021, 9, 265-278.	3.4	26
6	\hat{l}^2 2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. Immunity, 2021, 54, 1772-1787.e9.	14.3	49
7	Plasma-derived extracellular vesicles discriminate type-1 allergy subjects from non-allergic controls. World Allergy Organization Journal, 2021, 14, 100583.	3.5	6
8	Mathematical Modelling in Biomedicine: A Primer for the Curious and the Skeptic. International Journal of Molecular Sciences, 2021, 22, 547.	4.1	7
9	IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity, 2021, 54, 2531-2546.e5.	14.3	67
10	Multi-Level Computational Modeling of Anti-Cancer Dendritic Cell Vaccination Utilized to Select Molecular Targets for Therapy Optimization. Frontiers in Cell and Developmental Biology, 2021, 9, 746359.	3.7	3
11	Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus–Positive MCC Cell Lines. Frontiers in Microbiology, 2021, 12, 785662.	3.5	1
12	Heterogeneous fate choice of genetically modulated adult neural stem cells in gray and white matter of the central nervous system. Glia, 2020, 68, 393-406.	4.9	4
13	RNA Sequencing of Collecting Duct Renal Cell Carcinoma Suggests an Interaction between miRNA and Target Genes and a Predominance of Deregulated Solute Carrier Genes. Cancers, 2020, 12, 64.	3.7	18
14	Evidence for liver and peripheral immune cells secreting tumor-suppressive extracellular vesicles in melanoma patients. EBioMedicine, 2020, 62, 103119.	6.1	8
15	The Role of Age, Neutrophil Infiltration and Antibiotics Timing in the Severity of Streptococcus pneumoniae Pneumonia. Insights from a Multi-Level Mathematical Model Approach. International Journal of Molecular Sciences, 2020, 21, 8428.	4.1	4
16	An integrative network-driven pipeline for systematic identification of lncRNA-associated regulatory network motifs in metastatic melanoma. BMC Bioinformatics, 2020, 21, 329.	2.6	6
17	Mycobacterial Cord Factor Reprograms the Macrophage Response to IFN- \hat{l}^3 towards Enhanced Inflammation yet Impaired Antigen Presentation and Expression of GBP1. Journal of Immunology, 2020, 205, 1580-1592.	0.8	10
18	EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death and Disease, 2020, 11, 147.	6.3	58

#	Article	IF	Citations
19	Transcriptional analysis identifies potential biomarkers and molecular regulators in pneumonia and COPD exacerbation. Scientific Reports, 2020, 10, 241.	3.3	17
20	The role of cooperativity in a p53-miR34 dynamical mathematical model. Journal of Theoretical Biology, 2020, 495, 110252.	1.7	2
21	The Role of Immune Checkpoint Blockade in Uveal Melanoma. International Journal of Molecular Sciences, 2020, 21, 879.	4.1	57
22	Envisioning the Application of Systems Biology in Cancer Immunology. , 2020, , 599-624.		0
23	Exosomal IncRNAs and cancer: connecting the missing links. Bioinformatics, 2019, 35, 352-360.	4.1	51
24	Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature, 2019, 572, 670-675.	27.8	345
25	Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Research, 2019, 47, 7753-7766.	14.5	126
26	Curatopes Melanoma: A Database of Predicted T-cell Epitopes from Overly Expressed Proteins in Metastatic Cutaneous Melanoma. Cancer Research, 2019, 79, 5452-5456.	0.9	3
27	Modelling of Protein Kinase Signaling Pathways in Melanoma and Other Cancers. Cancers, 2019, 11, 465.	3.7	14
28	A gene regulatory architecture that controls regionâ€independent dynamics of oligodendrocyte differentiation. Glia, 2019, 67, 825-843.	4.9	36
29	Computational Approaches in microRNA Biology. , 2019, , 317-330.		1
30	Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine. Briefings in Bioinformatics, 2019, 20, 1057-1062.	6.5	15
31	Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. Journal of Clinical Investigation, 2019, 129, 2669-2684.	8.2	51
32	Innate extracellular vesicles from melanoma patients suppress \hat{l}^2 -catenin in tumor cells by miRNA-34a. Life Science Alliance, 2019, 2, e201800205.	2.8	22
33	A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2315-2328.	3.8	18
34	Whither systems medicine?. Experimental and Molecular Medicine, 2018, 50, e453-e453.	7.7	49
35	Model-Based Phenotypic Signatures Governing the Dynamics of the Stem and Semi-differentiated Cell Populations in Dysplastic Colonic Crypts. Bulletin of Mathematical Biology, 2018, 80, 360-384.	1.9	3
36	Can Gamification Contribute to Computer Modeling-Driven Biomedical Research?. Frontiers in Physiology, 2018, 9, 908.	2.8	4

#	Article	IF	CITATIONS
37	Delay in antibiotic therapy results in fatal disease outcome in murine pneumococcal pneumonia. Critical Care, 2018, 22, 287.	5.8	15
38	Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Seminars in Cancer Biology, 2018, 53, 90-109.	9.6	62
39	Bacterial Adherence and Dwelling Probability: Two Drivers of Early Alveolar Infection by Streptococcus pneumoniae Identified in Multi-Level Mathematical Modeling. Frontiers in Cellular and Infection Microbiology, 2018, 8, 159.	3.9	10
40	Transcriptional Profiling of Ligand Expression in Cell Specific Populations of the Adult Mouse Forebrain That Regulates Neurogenesis. Frontiers in Neuroscience, 2018, 12, 220.	2.8	13
41	MiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance. Theranostics, 2018, 8, 1106-1120.	10.0	59
42	Editorial: Foundations of Theoretical Approaches in Systems Biology. Frontiers in Genetics, 2018, 9, 290.	2.3	0
43	Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget, 2018, 9, 10402-10416.	1.8	44
44	An Interactive Macrophage Signal Transduction Map Facilitates Comparative Analyses of High-Throughput Data. Journal of Immunology, 2017, 198, 2191-2201.	0.8	21
45	Identification of miRNA-mRNA Modules in Colorectal Cancer Using Rough Hypercuboid Based Supervised Clustering. Scientific Reports, 2017, 7, 42809.	3.3	13
46	Transcription factor Sox10 regulates oligodendroglial Sox9 levels via microRNAs. Glia, 2017, 65, 1089-1102.	4.9	41
47	The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages. Journal of Immunology, 2017, 198, 3605-3614.	0.8	67
48	$01.12 \hat{a} \in \dots$ Fra-1 transcription factor expression in macrophages foster inflammation during rheumatoid arthritis development., 2017,,.		0
49	THP-1-derived macrophages render lung epithelial cells hypo-responsive to Legionella pneumophila – a systems biology study. Scientific Reports, 2017, 7, 11988.	3.3	21
50	Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures. Nature Communications, 2017, 8, 198.	12.8	84
51	02.24â€The ap-1 transcription factor c-jun promotes arthritis by regulating cyclooxygenase-2 expression in macrophages. , 2017, , .		0
52	Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection. Frontiers in Physiology, 2017, 8, 645.	2.8	24
53	A new semisynthetic cardenolide analog $3\hat{l}^2$ -[2-(1-amantadine)- 1-on-ethylamine]-digitoxigenin (AMANTADIG) affects G2/M cell cycle arrest and miRNA expression profiles and enhances proapoptotic survivin-2B expression in renal cell carcinoma cell lines. Oncotarget, 2017, 8, 11676-11691.	1.8	18
54	Model-based genotype-phenotype mapping used to investigate gene signatures of immune sensitivity and resistance in melanoma micrometastasis. Scientific Reports, 2016, 6, 24967.	3.3	19

#	Article	IF	CITATIONS
55	Genome-wide Chromatin Profiling of <i>Legionella pneumophila</i> À–Infected Human Macrophages Reveals Activation of the Probacterial Host Factor TNFAIP2. Journal of Infectious Diseases, 2016, 214, 454-463.	4.0	13
56	Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Research, 2016, 44, 6019-6035.	14.5	135
57	MicroRNAs Constitute a Negative Feedback Loop in∢i>Streptococcus pneumoniae∢/i>–Induced Macrophage Activation. Journal of Infectious Diseases, 2016, 214, 288-299.	4.0	21
58	The RNA world in the 21st centuryâ€"a systems approach to finding non-coding keys to clinical questions. Briefings in Bioinformatics, 2016, 17, 380-392.	6.5	19
59	Personalized cancer immunotherapy using Systems Medicine approaches. Briefings in Bioinformatics, 2016, 17, 453-467.	6. 5	23
60	Systems Medicine for Lung Diseases: Phenotypes and Precision Medicine in Cancer, Infection, and Allergy. Methods in Molecular Biology, 2016, 1386, 119-133.	0.9	4
61	Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive. Methods in Molecular Biology, 2016, 1386, 135-179.	0.9	20
62	microRNAs constitute a negative feedback loop in <i> streptococcus pneumoniae </i> induced macrophage activation. , 2016, , .		0
63	Genome-wide chromatin profiling oflegionella pneumophila-infected human macrophages reveals activation of the pro-bacterial host factor TNFAIP2. , 2016 , , .		0
64	Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells. Journal of Immunology Research, 2015, 2015, 1-9.	2.2	9
65	Rough hypercuboid based supervised clustering of miRNAs. Molecular BioSystems, 2015, 11, 2068-2081.	2.9	5
66	Envisioning the Application of Systems Biology in Cancer Immunology. , 2015, , 429-449.		3
67	Chk1 and Wee1 control genotoxic-stress induced G2–M arrest in melanoma cells. Cellular Signalling, 2015, 27, 951-960.	3. 6	33
68	miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget, 2015, 6, 2966-2980.	1.8	72
69	Supervised Cluster Analysis of miRNA Expression Data Using Rough Hypercuboid Partition Matrix. Lecture Notes in Computer Science, 2015, , 482-494.	1.3	0
70	Dissecting Long-Term Glucose Metabolism Identifies New Susceptibility Period for Metabolic Dysfunction in Aged Mice. PLoS ONE, 2015, 10, e0140858.	2.5	2
71	Computational Systems Biology Methods in Molecular Biology, Chemistry Biology, Molecular Biomedicine, and Biopharmacy. BioMed Research International, 2014, 2014, 1-2.	1.9	17
72	Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Research, 2014, 42, 7539-7552.	14.5	72

#	Article	IF	CITATIONS
73	Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 289-298.	2.3	21
74	The systems biology of mitochondrial fission and fusion and implications for disease and aging. Biogerontology, 2014, 15, 1-12.	3.9	46
75	Systems Biology Approaches in Aging Research. Interdisciplinary Topics in Gerontology, 2014, 40, 155-176.	3.6	7
76	Tumors as chaotic attractors. Molecular BioSystems, 2014, 10, 172-179.	2.9	17
77	Asthma phenotyping, therapy, and prevention: what can we learn from systems biology?. Pediatric Research, 2013, 73, 543-552.	2.3	19
78	Kinetic Modeling–Based Detection of Genetic Signatures That Provide Chemoresistance via the E2F1-p73/DNp73-miR-205 Network. Cancer Research, 2013, 73, 3511-3524.	0.9	56
79	MicroRNA-Regulated Networks: The Perfect Storm for Classical Molecular Biology, the Ideal Scenario for Systems Biology. Advances in Experimental Medicine and Biology, 2013, 774, 55-76.	1.6	50
80	A Systems' Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks. BioMed Research International, 2013, 2013, 1-15.	1.9	32
81	In Silico Approaches and the Role of Ontologies in Aging Research. Rejuvenation Research, 2013, 16, 540-546.	1.8	2
82	Computational microRNA Biology. , 2013, , 473-480.		1
83	Nonlinear Dynamics, miRNA Circuits. , 2013, , 1541-1545.		0
84	MicroRNA-embedding Regulation Networks, Logical Modeling. , 2013, , 1350-1354.		0
85	Biochemical Systems Optimization Through Mathematical Programming. , 2013, , 92-101.		0
86	Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Research, 2012, 40, 8818-8834.	14.5	77
87	Dynamics of a miRNA Model with Two Delays. Biotechnology and Biotechnological Equipment, 2012, 26, 3315-3320.	1.3	10
88	Analysis of cell adhesion during early stages of colon cancer based on an extended multi-valued logic approach. Molecular BioSystems, 2012, 8, 1230.	2.9	17
89	Modeling miRNA Regulation in Cancer Signaling Systems: miR-34a Regulation of the p53/Sirt1 Signaling Module. Methods in Molecular Biology, 2012, 880, 87-108.	0.9	25
90	Biochemical Pathway Modeling Tools for Drug Target Detection in Cancer and Other Complex Diseases. Methods in Enzymology, 2011, 487, 319-369.	1.0	20

#	Article	IF	Citations
91	Systems biology of JAK-STAT signalling in human malignancies. Progress in Biophysics and Molecular Biology, 2011, 106, 426-434.	2.9	44
92	Model-based investigation of the transcriptional activity of p53 and its feedback loop regulation via 14-3-3 [f. IET Systems Biology, 2011, 5, 293-307.	1.5	8
93	A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory in Biosciences, 2011, 130, 55-69.	1.4	18
94	Identification of immunogenic consensus T-cell epitopes in globally distributed influenza-A H1N1 neuraminidase. Infection, Genetics and Evolution, 2011, 11, 308-319.	2.3	23
95	Computational analysis and modeling the effectiveness of â€Zanamivir' targeting neuraminidase protein in pandemic H1N1 strains. Infection, Genetics and Evolution, 2011, 11, 1072-1082.	2.3	4
96	Mathematical Tools in Cancer Signalling Systems Biology. , 2011, , 185-212.		5
97	Non-coding RNA detection methods combined to improve usability, reproducibility and precision. BMC Bioinformatics, 2010, 11, 491.	2.6	17
98	Optimization of biochemical systems through mathematical programming: Methods and applications. Computers and Operations Research, 2010, 37, 1427-1438.	4.0	41
99	Dynamic energy budget approaches for modelling organismal ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3443-3454.	4.0	33
100	Baccoside A suppresses epileptic-like seizure/convulsion in Caenorhabditis elegans. Seizure: the Journal of the British Epilepsy Association, 2010, 19, 439-442.	2.0	28
101	Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models. Molecular BioSystems, 2010, 6, 2174.	2.9	24
102	Integration of sensitivity and bifurcation analysis to detect critical processes in a model combining signalling and cell population dynamics. International Journal of Systems Science, 2010, 41, 81-105.	5.5	17
103	Role of inhibitory proteins as modulators of oscillations in NFκB signalling. IET Systems Biology, 2009, 3, 59-76.	1.5	14
104	A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis. Computational Biology and Chemistry, 2009, 33, 312-324.	2.3	18
105	Exploration of homodimer receptor: homodimer protein interactions. International Journal of Bioinformatics Research and Applications, 2009, 5, 447.	0.2	2
106	14-3-3if gene silencing during melanoma progression and its role in cell cycle control and cellular senescence. Molecular Cancer, 2009, 8, 53.	19.2	42
107	Dynamical effects of epigenetic silencing of $14-3-3$ if expression. Molecular BioSystems, 2009, 6, 264-273.	2.9	17
108	Growth and ligninolytic system production dynamics of the Phanerochaete chrysosporium fungus. Journal of Biotechnology, 2008, 137, 50-58.	3.8	6

#	Article	IF	Citations
109	Multi-objective steady state optimization of biochemical reaction networks using a constrained genetic algorithm. Computers and Chemical Engineering, 2008, 32, 1707-1713.	3.8	21
110	Dynamic properties of a delayed protein cross talk model. BioSystems, 2008, 91, 51-68.	2.0	25
111	Design of Metabolic Engineering Strategies for Maximizing l-(-)-Carnitine Production by Escherichia coli. Integration of the Metabolic and Bioreactor Levels. Biotechnology Progress, 2008, 21, 329-337.	2.6	16
112	A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Systems Biology, 2008, 2, 38.	3.0	37
113	Dynamics of receptor and protein transducer homodimerisation. BMC Systems Biology, 2008, 2, 92.	3.0	9
114	Chapter 17 A System Biology Approach to Understand Functional Activity of Cell Communication Systems. Methods in Cell Biology, 2008, 90, 399-415.	1.1	30
115	SBML export interface for the systems biology toolbox for MATLAB. Bioinformatics, 2007, 23, 1297-1298.	4.1	8
116	Detection of potential enzyme targets by metabolic modelling and optimization: Application to a simple enzymopathy. Bioinformatics, 2007, 23, 2281-2289.	4.1	32
117	PLMaddon: a power-law module for the MatlabTM SBToolbox. Bioinformatics, 2007, 23, 2638-2640.	4.1	6
118	Power-law models of signal transduction pathways. Cellular Signalling, 2007, 19, 1531-1541.	3.6	66
119	Model based optimization of biochemical systems using multiple objectives: a comparison of several solution strategies. Mathematical and Computer Modelling of Dynamical Systems, 2006, 12, 469-487.	2.2	32
120	Optimal Non-Linear Design and Control of Bioprocesses via Linear Programming. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 469-474.	0.4	0
121	Analysis and Optimisation of Bioprocesses with METMAP. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 553-558.	0.4	1
122	MetMAP: an integrated Matlab package for analysis and optimization of metabolic systems. In Silico Biology, 2004, 4, 97-108.	0.9	5
123	Integrated nonlinear optimization of bioprocesses via linear programming. AICHE Journal, 2003, 49, 3173-3187.	3.6	11
124	Multicriteria optimization of biochemical systems by linear programming: Application to production of ethanol by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2003, 83, 335-343.	3.3	70
125	l² ₂ -Microglobulin - A Trigger for NLRP3 Inflammasome Activation in Tumor-Associated Macrophages Promoting Multiple Myeloma Progression. SSRN Electronic Journal, 0,	0.4	0