
Avelina GarcÃ-a GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3867582/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined removal of diesel soot particulates and NO over CeO2–ZrO2 mixed oxides. Journal of Catalysis, 2008, 259, 123-132.	6.2	254
2	Effect of NO adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Applied Catalysis B: Environmental, 2009, 92, 126-137.	20.2	189
3	Catalytic activity for soot combustion of birnessite and cryptomelane. Applied Catalysis B: Environmental, 2010, 93, 267-273.	20.2	134
4	Thermally stable ceria–zirconia catalysts for soot oxidation by O2. Catalysis Communications, 2008, 9, 250-255.	3.3	112
5	Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria–zirconia catalysts. Journal of Molecular Catalysis A, 2009, 300, 103-110.	4.8	97
6	Catalytic NOx reduction by carbon supporting metals. Applied Catalysis B: Environmental, 1999, 20, 267-275.	20.2	92
7	Active oxygen by Ce–Pr mixed oxide nanoparticles outperform diesel soot combustion Pt catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 60-66.	20.2	85
8	Comparison of the catalytic activity of MO2 (M=Ti, Zr, Ce) for soot oxidation under NOx/O2. Journal of Catalysis, 2007, 250, 75-84.	6.2	83
9	Activity, selectivity and stability of praseodymium-doped CeO2 for chlorinated VOCs catalytic combustion. Applied Catalysis B: Environmental, 2012, 121-122, 162-170.	20.2	82
10	Uncatalysed and catalysed soot combustion under NOx+O2: Real diesel versus model soots. Combustion and Flame, 2010, 157, 2086-2094.	5.2	79
11	Influence of the physico-chemical properties of CeO2–ZrO2 mixed oxides on the catalytic oxidation of NO to NO2. Applied Surface Science, 2010, 256, 7706-7712.	6.1	75
12	Preparation, characterisation and testing of CuO/Ce0.8Zr0.2O2 catalysts for NO oxidation to NO2 and mild temperature diesel soot combustion. Applied Catalysis B: Environmental, 2014, 152-153, 99-107.	20.2	75
13	Probing the Surface of Ceriaâ^'Zirconia Catalysts Using NO _{<i>x</i>} Adsorption/Desorption: A First Step Toward the Investigation of Crystallite Heterogeneity. Journal of Physical Chemistry C, 2010, 114, 13300-13312.	3.1	74
14	New insights into the performance of ceria–zirconia mixed oxides as soot combustion catalysts. Identification of the role of "active oxygen―production. Catalysis Today, 2011, 176, 404-408.	4.4	65
15	Effects of a Pt/Ce0.68Zr0.32O2 catalyst and NO2 on the kinetics of diesel soot oxidation from thermogravimetric analyses. Fuel Processing Technology, 2011, 92, 363-371.	7.2	53
16	lsotopic study of ceria-catalyzed soot oxidation in the presence of NOx. Journal of Catalysis, 2013, 299, 181-187.	6.2	53
17	Influence of the cerium precursor on the physico-chemical features and NO to NO2 oxidation activity of ceria and ceria–zirconia catalysts. Journal of Molecular Catalysis A, 2010, 323, 52-58.	4.8	52
18	Potassium-containing briquetted coal for the reduction of NO. Fuel, 1997, 76, 499-505.	6.4	50

#	Article	IF	CITATIONS
19	Catalytic performances of ceria and ceria-zirconia materials for the combustion of diesel soot under NOx/O2 and O2. Importance of the cerium precursor salt. Applied Catalysis A: General, 2012, 437-438, 166-172.	4.3	46
20	Lattice oxygen activity in ceria-praseodymia mixed oxides for soot oxidation in catalysed Gasoline Particle Filters. Applied Catalysis B: Environmental, 2019, 245, 706-720.	20.2	43
21	Contributions of surface and bulk heterogeneities to the NO oxidation activities of ceria–zirconia catalysts with composition Ce0.76Zr0.24O2 prepared by different methods. Physical Chemistry Chemical Physics, 2010, 12, 13770.	2.8	39
22	Surface and structural characterisation of coprecipitated Ce x Zr1â^'x O2 (0Ââ‰ÂxÂâ‰Â1) mixed oxides. Journal of Materials Science, 2012, 47, 3204-3213.	3.7	36
23	Influence of peroxometallic intermediaries present on polyoxometalates nanoparticles surface on the adipic acid synthesis. Journal of Molecular Catalysis A, 2014, 394, 211-216.	4.8	31
24	Further Insights into the Key Features of Ceria–Zirconia Mixed Oxides Governing the Catalysed Soot Combustion Under NO x /O2. Topics in Catalysis, 2009, 52, 2088-2091.	2.8	30
25	Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production. Bioresource Technology, 2003, 88, 27-32.	9.6	29
26	SO2 retention at low temperatures by Ca(OH)2-derived CaO: a model for CaO regeneration. Fuel, 2002, 81, 305-313.	6.4	28
27	Catalytic activity of La-modified TiO2 for soot oxidation by O2. Catalysis Communications, 2007, 8, 478-482.	3.3	28
28	NO Reduction by Potassium-Containing Coal Briquettes. Effect of Mineral Matter Content and Coal Rank. Energy & Fuels, 1997, 11, 292-298.	5.1	27
29	NOxReduction by Potassium-Containing Coal Briquettes. Effect of NO2Concentration. Energy & Fuels, 1999, 13, 499-505.	5.1	26
30	Study of Ce/Pr ratio in ceria-praseodymia catalysts for soot combustion under different atmospheres. Applied Catalysis A: General, 2020, 590, 117339.	4.3	26
31	NOx Reduction by Potassium-Containing Coal Briquettes. Effect of Preparation Procedure and Potassium Content. Energy & amp; Fuels, 2002, 16, 569-574.	5.1	25
32	Identifying the nature of the copper entities over ceria-based supports to promote diesel soot combustion: Synergistic effects. Applied Catalysis A: General, 2017, 542, 226-239.	4.3	25
33	Catalyzed Particulate Filter Regeneration by Platinum Versus Noble Metal-Free Catalysts: From Principles to Real Application. Topics in Catalysis, 2017, 60, 2-12.	2.8	25
34	Opportunities for ceria-based mixed oxides versus commercial platinum-based catalysts in the soot combustion reaction. Mechanistic implications. Fuel Processing Technology, 2015, 129, 227-235.	7.2	23
35	Catalytic performance of CuO/Ce _{0.8} Zr _{0.2} O ₂ loaded onto SiC-DPF in NO _x -assisted combustion of diesel soot. RSC Advances, 2015, 5, 17018-17029.	3.6	22
36	Combined SO2 and NOx removal at moderate temperature by a dual bed of potassium-containing coal-pellets and calcium-containing pellets. Fuel Processing Technology, 2005, 86, 1745-1759.	7.2	20

#	Article	IF	CITATIONS
37	Study of the temperature window for the selective reduction of NO in O2-rich gas mixtures by metal-loaded carbon. Catalysis Communications, 2006, 7, 678-684.	3.3	19
38	Attempts at an in situ Raman study of ceria/zirconia catalysts in PM combustion. Applied Catalysis B: Environmental, 2011, 108-109, 134-139.	20.2	19
39	Catalytic activity of Cu and Co supported on ceria-yttria-zirconia oxides for the diesel soot combustion reaction in the presence of NOx. Chemical Engineering Journal, 2020, 380, 122370.	12.7	19
40	Ceria-Praseodymia Mixed Oxides: Relationships Between Redox Properties and Catalytic Activities Towards NO Oxidation to NO2 and CO-PROX Reactions. Topics in Catalysis, 2016, 59, 1065-1070.	2.8	18
41	Advances in Potassium Catalyzed NOxReduction by Carbon Materials:Â An Overview. Industrial & Engineering Chemistry Research, 2007, 46, 3891-3903.	3.7	17
42	NOx Adsorption/Desorption Processes Over Ce0.76Zr0.24O2 and Their Influence on DeSoot Activity: Effect of the Catalyst Calcination Temperature. Topics in Catalysis, 2009, 52, 2092-2096.	2.8	17
43	Potassium-containing coal-pellets for NO reduction under gas mixtures of different composition. Carbon, 2004, 42, 1565-1574.	10.3	15
44	Evidences of the Cerium Oxide-Catalysed DPF Regeneration in a Real Diesel Engine Exhaust. Topics in Catalysis, 2013, 56, 452-456.	2.8	14
45	Behavior of different soot combustion catalysts under NOx/O2. Importance of the catalyst–soot contact. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 167-182.	1.7	14
46	NOx reduction by potassium-containing coal pellets. Discussing lifetime test profiles. Fuel Processing Technology, 2002, 77-78, 301-307.	7.2	13
47	Influence of potassium loading at different reaction temperatures on the NOx reduction process by potassium-containing coal pelletsâ~†. Fuel, 2003, 82, 267-274.	6.4	12
48	Potential of Cu–saponite catalysts for soot combustion. Catalysis Science and Technology, 2016, 6, 507-514.	4.1	12
49	Development of a Kinetic Model for the NOxReduction Process by Potassium-Containing Coal Pellets. Environmental Science & Technology, 2002, 36, 5447-5454.	10.0	11
50	Regenerable CaO sorbents for SO2 retention: carbonaceous versus inorganic dispersants. Fuel, 2002, 81, 2435-2438.	6.4	11
51	Low-Cost Potassium-Containing Char Briquettes for NOx Reduction. Energy & Fuels, 2002, 16, 997-1003.	5.1	10
52	Influence of SO2in the Reduction of NOxby Potassium-Containing Coal Pellets. Energy & Fuels, 2005, 19, 94-100.	5.1	10
53	Evaluation of hectorites, synthesized in different conditions, as soot combustion catalysts after impregnation with copper. Applied Clay Science, 2013, 77-78, 40-45.	5.2	10
54	Ceria-based catalysts for NOx removal in NSR processes: A fundamental study of the catalyst modifications explored by in situ techniques. Applied Surface Science, 2020, 529, 147019.	6.1	10

#	Article	IF	CITATIONS
55	Analysis of the Reaction Conditions in the NOxReduction Process by Carbon with a View to Achieve High NOxConversions. Residence Time Considerations. Energy & Fuels, 2002, 16, 1425-1428.	5.1	8
56	Kinetic model for the NOx reduction process by potassium containing coal char pellets at moderate temperature (350–450 °C) in the presence of O2 and H2O. Fuel Processing Technology, 2006, 87, 429-436.	7.2	7
57	NOx Adsorption Over Ce/Zr-Based Catalysts Doped with Cu and Ba. Topics in Catalysis, 2019, 62, 140-149.	2.8	7
58	lsotopic study of the influence of oxygen interaction and surface species over different catalysts on the soot removal mechanism. Catalysis Today, 2022, 384-386, 33-44.	4.4	7
59	The Emissions of VOCs during Co-Combustion of Coal with Different Waste Materials in a Fluidized Bed. Energy & Fuels, 2004, 18, 605-610.	5.1	6
60	Insights into the relationship between the catalytic oxidation performances of Ce-Pr mixed oxides and their semiconductive and redox properties. Applied Catalysis A: General, 2019, 578, 30-39.	4.3	5
61	Unraveling the nature of active sites onto copper/ceria-zirconia catalysts for low temperature CO oxidation. Catalysis Today, 2022, 384-386, 246-256.	4.4	5
62	NOx removal by low-cost char pellets: Factors influencing the activity and selectivity towards NOx reduction. Fuel, 2007, 86, 949-956.	6.4	4
63	INTERACTION OF NITROGEN OXIDES WITH CERIA-BASED MATERIALS. Catalytic Science Series, 2013, , 223-246.	0.0	4
64	Improved NOx Storage/Release Properties of Ceria-Based Lean NOx Trap Compositions with MnOx Modification. Materials, 2019, 12, 2127.	2.9	4
65	Activated Carbons Prepared from Pine Wastes for the Uptake of Organic Compounds from Aqueous Solution. Adsorption Science and Technology, 2002, 20, 1051-1063.	3.2	3
66	NOX reduction by coal briquets Coal Science and Technology, 1995, , 1787-1790.	0.0	2
67	NOx Reduction Pathways during LNT Operation over Ceria Containing Catalysts: Effect of Copper Presence and Barium Content. Applied Sciences (Switzerland), 2021, 11, 5700.	2.5	2