Hisham A Alhadlaq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3867352/publications.pdf

Version: 2024-02-01

82 papers 4,456 citations

94433 37 h-index 65 g-index

82 all docs 82 docs citations

times ranked

82

5771 citing authors

#	Article	IF	CITATIONS
1	Facile green synthesis of ZnO-RGO nanocomposites with enhanced anticancer efficacy. Methods, 2022, 199, 28-36.	3.8	63
2	Enhanced Anticancer Performance of Eco-Friendly-Prepared Mo-ZnO/RGO Nanocomposites: Role of Oxidative Stress and Apoptosis. ACS Omega, 2022, 7, 7103-7115.	3.5	40
3	Enhanced structural, optical, electrical properties and antibacterial activity of PEO/CMC doped ZnO nanorods for energy storage and food packaging applications. Journal of Polymer Research, 2022, 29, 1.	2.4	27
4	Histology and radiography studies of effects of Lepidium sativum seeds on bone healing in male albino rats. Journal of King Saud University - Science, 2022, 34, 102062.	3.5	0
5	Green and chemical synthesis of CuO nanoparticles: A comparative study for several in vitro bioactivities and in vivo toxicity in zebrafish embryos. Journal of King Saud University - Science, 2022, 34, 102092.	3.5	16
6	One-Pot Synthesis of SnO2-rGO Nanocomposite for Enhanced Photocatalytic and Anticancer Activity. Polymers, 2022, 14, 2036.	4.5	13
7	CeO2-Zn Nanocomposite Induced Superoxide, Autophagy and a Non-Apoptotic Mode of Cell Death in Human Umbilical-Vein-Derived Endothelial (HUVE) Cells. Toxics, 2022, 10, 250.	3.7	6
8	In vitro antidiabetic and anti-inflammatory effects of Fe-doped CuO-rice husk silica (Fe-CuO-SiO2) nanocomposites and their enhanced innate immunity in zebrafish. Journal of King Saud University - Science, 2022, 34, 102121.	3.5	8
9	High Performance of Carbon Monoxide Gas Sensor Based on a Novel PEDOT:PSS/PPA Nanocomposite. ACS Omega, 2022, 7, 22492-22499.	3.5	17
10	Combined effect of single-walled carbon nanotubes and cadmium on human lung cancer cells. Environmental Science and Pollution Research, 2022, 29, 87844-87857.	5.3	9
11	Citrus limetta Risso peel mediated green synthesis of gold nanoparticles and its antioxidant and catalytic activity. Journal of King Saud University - Science, 2022, 34, 102235.	3.5	11
12	Green synthesized chitosan modified platinum-doped silver nanocomposite: An investigation for biomedical and environmental applications. Journal of King Saud University - Science, 2022, 34, 102220.	3.5	2
13	SnO2-Doped ZnO/Reduced Graphene Oxide Nanocomposites: Synthesis, Characterization, and Improved Anticancer Activity via Oxidative Stress Pathway. International Journal of Nanomedicine, 2021, Volume 16, 89-104.	6.7	95
14	Pt-Coated Au Nanoparticle Toxicity Is Preferentially Triggered Via Mitochondrial Nitric Oxide/Reactive Oxygen Species in Human Liver Cancer (HepG2) Cells. ACS Omega, 2021, 6, 15431-15441.	3.5	5
15	Facile Synthesis of Zn-Doped Bi ₂ O ₃ Nanoparticles and Their Selective Cytotoxicity toward Cancer Cells. ACS Omega, 2021, 6, 17353-17361.	3.5	48
16	Anti-Inflammatory CeO2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules, 2021, 26, 5416.	3.8	8
17	A Novel Green Preparation of Ag/RGO Nanocomposites with Highly Effective Anticancer Performance. Polymers, 2021, 13, 3350.	4.5	44
18	Facile Synthesis, Characterization, Photocatalytic Activity, and Cytotoxicity of Ag-Doped MgO Nanoparticles. Nanomaterials, 2021, 11, 2915.	4.1	36

#	Article	IF	CITATIONS
19	Mitochondrial dysfunction, autophagy stimulation and non-apoptotic cell death caused by nitric oxide-inducing Pt-coated Au nanoparticle in human lung carcinoma cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129452.	2.4	17
20	Influence of silica nanoparticles on cadmiumâ€induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells. Environmental Toxicology, 2020, 35, 599-608.	4.0	11
21	Barium Titanate (BaTiO3) Nanoparticles Exert Cytotoxicity through Oxidative Stress in Human Lung Carcinoma (A549) Cells. Nanomaterials, 2020, 10, 2309.	4.1	20
22	Gadolinium Oxide Nanoparticles Induce Toxicity in Human Endothelial HUVECs via Lipid Peroxidation, Mitochondrial Dysfunction and Autophagy Modulation. Nanomaterials, 2020, 10, 1675.	4.1	27
23	Alleviating effects of reduced graphene oxide against leadâ€induced cytotoxicity and oxidative stress in human alveolar epithelial (A549) cells. Journal of Applied Toxicology, 2020, 40, 1228-1238.	2.8	5
24	Reduced graphene oxide mitigates cadmium-induced cytotoxicity and oxidative stress in HepG2 cells. Food and Chemical Toxicology, 2020, 143, 111515.	3.6	21
25	Crosslinked Coating Improves the Signalâ€toâ€Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI). ChemNanoMat, 2020, 6, 755-758.	2.8	5
26	TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. Environmental Science and Pollution Research, 2020, 27, 10425-10435.	5.3	29
27	Co-Exposure to SiO2 Nanoparticles and Arsenic Induced Augmentation of Oxidative Stress and Mitochondria-Dependent Apoptosis in Human Cells. International Journal of Environmental Research and Public Health, 2019, 16, 3199.	2.6	36
28	Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicology in Vitro, 2019, 57, 18-27.	2.4	53
29	Evaluation of the Cytotoxicity and Oxidative Stress Response of CeO2-RGO Nanocomposites in Human Lung Epithelial A549 Cells. Nanomaterials, 2019, 9, 1709.	4.1	28
30	Different cytotoxic and apoptotic responses of MCF-7 and HT1080 cells to MnO2 nanoparticles are based on similar mode of action. Toxicology, 2019, 411, 71-80.	4.2	36
31	Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi2O3) nanoparticles in human breast cancer (MCF-7) cells. Chemosphere, 2019, 216, 823-831.	8.2	85
32	Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells. Current Drug Metabolism, 2019, 20, 907-917.	1.2	14
33	Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO ₂ nanoparticles in A549 cells. Human and Experimental Toxicology, 2018, 37, 496-507.	2.2	21
34	Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clinica Chimica Acta, 2018, 487, 186-196.	1.1	17
35	MgO nanoparticles cytotoxicity caused primarily by GSH depletion in human lung epithelial cells. Journal of Trace Elements in Medicine and Biology, 2018, 50, 283-290.	3.0	23
36	Oxidative stress mediated cytotoxicity of tin (IV) oxide (SnO2) nanoparticles in human breast cancer (MCF-7) cells. Colloids and Surfaces B: Biointerfaces, 2018, 172, 152-160.	5.0	39

#	Article	IF	Citations
37	Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 802-813.	2.4	118
38	Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 156, 157-164.	5.0	30
39	Therapeutic targets in the selective killing of cancer cells by nanomaterials. Clinica Chimica Acta, 2017, 469, 53-62.	1.1	14
40	Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicology in Vitro, 2017, 40, 94-101.	2.4	32
41	Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Scientific Reports, 2017, 7, 17662.	3.3	127
42	Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicology and Industrial Health, 2016, 32, 809-821.	1.4	91
43	Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids and Surfaces B: Biointerfaces, 2016, 148, 665-673.	5.0	56
44	Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Scientific Reports, 2016, 6, 30196.	3.3	74
45	Differential cytotoxicity of copper ferrite nanoparticles in different human cells. Journal of Applied Toxicology, 2016, 36, 1284-1293.	2.8	47
46	Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells. Colloids and Surfaces B: Biointerfaces, 2016, 142, 46-54.	5.0	66
47	Cytotoxic response of platinumâ€coated gold nanorods in human breast cancer cells at very low exposure levels. Environmental Toxicology, 2016, 31, 1344-1356.	4.0	8
48	Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells. Journal of Applied Toxicology, 2015, 35, 640-650.	2.8	8
49	Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Scientific Reports, 2015, 5, 13876.	3.3	110
50	Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere, 2015, 135, 278-288.	8.2	79
51	Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy. Archives of Toxicology, 2015, 89, 1895-1907.	4.2	45
52	Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells. Journal of Colloid and Interface Science, 2015, 457, 370-377.	9.4	45
53	Glutathione replenishing potential of CeO 2 nanoparticles in human breast and fibrosarcoma cells. Journal of Colloid and Interface Science, 2015, 453, 21-27.	9.4	52
54	Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells. Cell and Bioscience, 2015, 5, 55.	4.8	57

#	Article	IF	CITATIONS
55	Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine, 2015, 10, 2365-2377.	3.3	91
56	Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids and Surfaces B: Biointerfaces, 2015, 125, 73-81.	5.0	55
57	Concentrationâ€dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure. Environmental Toxicology, 2015, 30, 137-148.	4.0	71
58	Nickel nanoparticle-induced dose-dependent cyto-genotoxicity in human breast carcinoma MCF-7 cells. OncoTargets and Therapy, 2014, 7, 269.	2.0	44
59	Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles. Journal of Nanomaterials, 2014, 2014, 1-4.	2.7	330
60	Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clinica Chimica Acta, 2014, 436, 78-92.	1.1	184
61	Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces. Archives of Oral Biology, 2013, 58, 1804-1811.	1.8	38
62	Multifunctional gadofulleride nanoprobe for magnetic resonance imaging/fluorescent dual modality molecular imaging and free radical scavenging. Carbon, 2013, 65, 175-180.	10.3	16
63	Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 2013, 93, 2514-2522.	8.2	143
64	Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	55
65	Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells. PLoS ONE, 2013, 8, e69534.	2.5	285
66	Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. International Journal of Nanomedicine, 2013, 8, 983.	6.7	62
67	Iron Oxide Nanoparticle-induced Oxidative Stress and Genotoxicity in Human Skin Epithelial and Lung Epithelial Cell Lines. Current Pharmaceutical Design, 2013, 19, 6681-6690.	1.9	114
68	Multifunctional imaging probe based on gadofulleride nanoplatform. Nanoscale, 2012, 4, 3669.	5.6	16
69	Making On-line Science Course Materials Easily Translatable and Accessible Worldwide: Challenges and Solutions. Journal of Science Education and Technology, 2012, 21, 1-10.	3.9	12
70	Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications, 2010, 396, 578-583.	2.1	321
71	Elucidation of the effects of a high fat diet on trace elements in rabbit tissues using atomic absorption spectroscopy. Lipids in Health and Disease, 2010, 9, 2.	3.0	6
72	Measuring Students' Beliefs about Physics in Saudi Arabia. , 2009, , .		8

#	Article	IF	CITATIONS
73	Evaluation of Electrical Conductivity of Hemoglobin and Oxidative Stress in High Fat Diet Rabbits. Journal of Applied Sciences, 2009, 9, 2185-2189.	0.3	2
74	Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging. Journal of Structural Biology, 2008, 164, 88-95.	2.8	34
75	Effects of Cholesterol Feeding Periods on Blood Haematology and Biochemistry of Rabbits. International Journal of Biological Chemistry, 2008, 2, 49-53.	0.3	11
76	Morphological Changes in Articular Cartilage Due to Static Compression: Polarized Light Microscopy Study. Connective Tissue Research, 2007, 48, 76-84.	2.3	24
77	Modifications of orientational dependence of microscopic magnetic resonance imaging T2 anisotropy in compressed articular cartilage. Journal of Magnetic Resonance Imaging, 2005, 22, 665-673.	3.4	33
78	Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Annals of the Rheumatic Diseases, 2004, 63, 709-717.	0.9	106
79	The structural adaptations in compressed articular cartilage by microscopic MRI (\hat{l} /4MRI) T2 anisotropy. Osteoarthritis and Cartilage, 2004, 12, 887-894.	1.3	59
80	Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution. Journal of Magnetic Resonance Imaging, 2003, 17, 365-374.	3.4	88
81	Characteristics of topographical heterogeneity of articular cartilage over the joint surface of a humeral head. Osteoarthritis and Cartilage, 2002, 10, 370-380.	1.3	52
82	Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (?MRI) study. Magnetic Resonance in Medicine, 2002, 48, 460-469.	3.0	202