
## **Thomas Frauenheim**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3867030/publications.pdf Version: 2024-02-01



THOMAS EDALIENHEIM

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Physical Review B, 1995, 51, 12947-12957.                            | 1.1 | 1,950     |
| 2  | DFTB+, a Sparse Matrix-Based Implementation of the DFTB Methodâ€. Journal of Physical Chemistry A, 2007, 111, 5678-5684.                                                             | 1.1 | 1,523     |
| 3  | Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. Journal of Chemical Physics, 2001, 114, 5149-5155.               | 1.2 | 978       |
| 4  | Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct <i>I</i> – <i>V</i> Response.<br>Journal of Physical Chemistry Letters, 2014, 5, 2675-2681.                  | 2.1 | 877       |
| 5  | DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. Journal of Chemical Physics, 2020, 152, 124101.                           | 1.2 | 589       |
| 6  | A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB)<br>Method. Journal of Physical Chemistry B, 2001, 105, 569-585.                     | 1.2 | 568       |
| 7  | Structure and Electronic Properties ofMoS2Nanotubes. Physical Review Letters, 2000, 85, 146-149.                                                                                     | 2.9 | 497       |
| 8  | Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Physical<br>Review B, 2010, 81, .                                                            | 1.1 | 459       |
| 9  | Atomistic simulations of complex materials: ground-state and excited-state properties. Journal of<br>Physics Condensed Matter, 2002, 14, 3015-3047.                                  | 0.7 | 423       |
| 10 | Two-Dimensional Cu <sub>2</sub> Si Monolayer with Planar Hexacoordinate Copper and Silicon<br>Bonding. Journal of the American Chemical Society, 2015, 137, 2757-2762.               | 6.6 | 335       |
| 11 | Accurate defect levels obtained from the HSEO6 range-separated hybrid functional. Physical Review B, 2010, 81, .                                                                     | 1.1 | 297       |
| 12 | Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Physical Review B, 2001, 65, .                                           | 1.1 | 267       |
| 13 | Calculating Absorption Shifts for Retinal Proteins:Â Computational Challenges. Journal of Physical<br>Chemistry B, 2005, 109, 3606-3615.                                             | 1.2 | 237       |
| 14 | Stability and electronic structure of GaN nanotubes from density-functional calculations. Physical<br>Review B, 1999, 60, 7788-7791.                                                 | 1.1 | 231       |
| 15 | Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag<br>MoS <sub>2</sub> Nanoribbons. Journal of Physical Chemistry Letters, 2012, 3, 2934-2941. | 2.1 | 229       |
| 16 | A Hydrogen Storage Mechanism in Single-Walled Carbon Nanotubes. Journal of the American Chemical<br>Society, 2001, 123, 5059-5063.                                                   | 6.6 | 227       |
| 17 | High-Throughput Screening of Synergistic Transition Metal Dual-Atom Catalysts for Efficient<br>Nitrogen Fixation. Nano Letters, 2021, 21, 1871-1878.                                 | 4.5 | 223       |
| 18 | Silicon Nanowire Band Gap Modification. Nano Letters, 2007, 7, 34-38.                                                                                                                | 4.5 | 215       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                  | IF                         | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| 19 | Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide. Journal of Physical Chemistry C, 2015, 119, 6918-6922.                                                                                                                                                                                                                    | 1.5                        | 210       |
| 20 | Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge<br>Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni. Journal of Chemical Theory and<br>Computation, 2007, 3, 1349-1367.                                                                                                          | 2.3                        | 208       |
| 21 | The Mechanism of Diamond Nucleation from Energetic Species. Science, 2002, 297, 1531-1533.                                                                                                                                                                                                                                                               | 6.0                        | 202       |
| 22 | Non-Markovian quantum processes: Complete framework and efficient characterization. Physical Review A, 2018, 97, .                                                                                                                                                                                                                                       | 1.0                        | 202       |
| 23 | Hydrogen adsorption and storage in carbon nanotubes. Synthetic Metals, 2000, 113, 209-216.                                                                                                                                                                                                                                                               | 2.1                        | 196       |
| 24 | Color Tuning in Rhodopsins:Â The Mechanism for the Spectral Shift between Bacteriorhodopsin and<br>Sensory Rhodopsin II. Journal of the American Chemical Society, 2006, 128, 10808-10818.                                                                                                                                                               | 6.6                        | 196       |
| 25 | Single-Parent Evolution Algorithm and the Optimization of Si Clusters. Physical Review Letters, 2000,<br>85,546-549<br>Choosing the correct hybrid for defect calculations: A case study on intrinsic carrier trapping in                                                                                                                                | 2.9                        | 189       |
| 26 | xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Î<sup>2</sup></mml:mi><mml:mo>â<sup>-</sup> mathvariant="normal"&gt;G<mml:msub><mml:mi<br>mathvariant="normal"&gt;a<mml:mn>2</mml:mn></mml:mi<br></mml:msub><mml:msub><mml:mi< td=""><td>mo&gt;<mml:<br>1.1</mml:<br></td><td>mi<br/>184</td></mml:mi<></mml:msub></mml:mo></mml:mrow> | mo> <mml:<br>1.1</mml:<br> | mi<br>184 |
| 27 | mathvariant="normal">O <mml:mn>3</mml:mn> .<br>Anymproved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters<br>for Simulation of Bulk and Molecular Systems Involving Titanium. Journal of Chemical Theory and<br>Computation, 2010, 6, 266-278.                                                                      | 2.3                        | 177       |
| 28 | Strain engineering of selective chemical adsorption on monolayer MoS <sub>2</sub> . Nanoscale, 2014, 6, 5156-5161.                                                                                                                                                                                                                                       | 2.8                        | 177       |
| 29 | Polaronic effects in fIO <mmi:math xmins:mmi="http://www.w3.org/1998/Wath/Wath/Wath/Wath/Wath/Wath/Wath/Wath&lt;/td"><td>1.1</td><td>176</td></mmi:math>                                                                                                                                                                                                 | 1.1                        | 176       |
| 30 | An approximate DFT method for QM/MM simulations of biological structures and processes.<br>Computational and Theoretical Chemistry, 2003, 632, 29-41.                                                                                                                                                                                                    | 1.5                        | 172       |
| 31 | Quantitative theory of the oxygen vacancy and carrier self-trapping in bulk TiO <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:msub><mml:mrow<br>/&gt;<mml:mn>2</mml:mn></mml:mrow<br></mml:msub>. Physical Review B, 2012, 86, .</mml:math<br>                                                                    | 1.1                        | 169       |
| 32 | Robust Two-Dimensional Topological Insulators in Methyl-Functionalized Bismuth, Antimony, and Lead<br>Bilayer Films. Nano Letters, 2015, 15, 1083-1089.                                                                                                                                                                                                  | 4.5                        | 166       |
| 33 | Application of an approximate density-functional method to sulfur containing compounds.<br>Computational and Theoretical Chemistry, 2001, 541, 185-194.                                                                                                                                                                                                  | 1.5                        | 165       |
| 34 | Band Lineup and Charge Carrier Separation in Mixed Rutile-Anatase Systems. Journal of Physical<br>Chemistry C, 2011, 115, 3443-3446.                                                                                                                                                                                                                     | 1.5                        | 162       |
| 35 | Operational Markov Condition for Quantum Processes. Physical Review Letters, 2018, 120, 040405.                                                                                                                                                                                                                                                          | 2.9                        | 157       |
| 36 | A Critical Evaluation of Different QM/MM Frontier Treatments with SCC-DFTB as the QM Method.<br>Journal of Physical Chemistry B, 2005, 109, 9082-9095.                                                                                                                                                                                                   | 1.2                        | 156       |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dark States of Single Nitrogen-Vacancy Centers in Diamond Unraveled by Single Shot NMR. Physical<br>Review Letters, 2011, 106, 157601.                                                                                            | 2.9 | 156       |
| 38 | A global investigation of excited state surfaces within time-dependent density-functional response theory. Journal of Chemical Physics, 2004, 120, 1674-1692.                                                                     | 1.2 | 151       |
| 39 | Defects inSiO2as the possible origin of near interface traps in theSiCâ^•SiO2system: A systematic theoretical study. Physical Review B, 2005, 72, .                                                                               | 1.1 | 151       |
| 40 | Modeling zinc in biomolecules with the self consistent charge-density functional tight binding<br>(SCC-DFTB) method: Applications to structural and energetic analysis. Journal of Computational<br>Chemistry, 2003, 24, 565-581. | 1.5 | 150       |
| 41 | Unraveling the Shape Transformation in Silicon Clusters. Physical Review Letters, 2004, 93, .                                                                                                                                     | 2.9 | 150       |
| 42 | Adsorption and Desorption of anO2Molecule on Carbon Nanotubes. Physical Review Letters, 2000, 85, 2757-2760.                                                                                                                      | 2.9 | 149       |
| 43 | Formation of NV centers in diamond: A theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects. Physical Review B, 2014, 89, .                                                     | 1.1 | 149       |
| 44 | Density functional based calculations for Fen (nâ $O^{1/2}$ 32). Chemical Physics, 2005, 309, 23-31.                                                                                                                              | 0.9 | 146       |
| 45 | Decomposition of HMX at Extreme Conditions:Â A Molecular Dynamics Simulation. Journal of Physical<br>Chemistry A, 2002, 106, 9024-9029.                                                                                           | 1.1 | 145       |
| 46 | The mechanism of defect creation and passivation at the SiC/SiO <sub>2</sub> interface. Journal Physics D: Applied Physics, 2007, 40, 6242-6253.                                                                                  | 1.3 | 143       |
| 47 | Nanoscale Multilayer Transition-Metal Dichalcogenide Heterostructures: Band Gap Modulation by<br>Interfacial Strain and Spontaneous Polarization. Journal of Physical Chemistry Letters, 2013, 4,<br>1730-1736.                   | 2.1 | 142       |
| 48 | Quantum mechanics simulation of protein dynamics on long timescale. Proteins: Structure, Function and Bioinformatics, 2001, 44, 484-489.                                                                                          | 1.5 | 140       |
| 49 | Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. Journal of Chemical Physics, 2005, 122, 114110.                                            | 1.2 | 140       |
| 50 | Theoretical prediction of topological insulators in thallium-based III-V-VI <sub>2</sub> ternary chalcogenides. Europhysics Letters, 2010, 90, 37002.                                                                             | 0.7 | 140       |
| 51 | Structure, stability, and vibrational properties of polymerizedC60. Physical Review B, 1995, 52, 14963-14970.                                                                                                                     | 1.1 | 139       |
| 52 | Density-functional-based construction of transferable nonorthogonal tight-binding potentials for Si<br>and SiH. Physical Review B, 1995, 52, 11492-11501.                                                                         | 1.1 | 133       |
| 53 | Theoretical study of the mechanism of dry oxidation of4H-SiC. Physical Review B, 2005, 71, .                                                                                                                                      | 1.1 | 133       |
| 54 | Atomic structure and physical properties of amorphous carbon and its hydrogenated analogs.<br>Physical Review B, 1993, 48, 4823-4834.                                                                                             | 1.1 | 132       |

| #  | Article                                                                                                                                                                                                                                                                                                                                    | IF               | CITATIONS  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| 55 | Energetics and structure of glycine and alanine based model peptides: Approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chemical Physics, 2001, 263, 203-219.                                                                                                                                     | 0.9              | 132        |
| 56 | "Proton Holes―in Long-Range Proton Transfer Reactions in Solution and Enzymes: A Theoretical<br>Analysis. Journal of the American Chemical Society, 2006, 128, 16302-16311.                                                                                                                                                                | 6.6              | 125        |
| 57 | Proper Surface Termination for Luminescent Near-Surface NV Centers in Diamond. Nano Letters, 2014, 14, 4772-4777.                                                                                                                                                                                                                          | 4.5              | 125        |
| 58 | On the electronic structure of WS2 nanotubes. Solid State Communications, 2000, 114, 245-248.                                                                                                                                                                                                                                              | 0.9              | 120        |
| 59 | Resonant Electron Heating and Molecular Phonon Cooling in Single <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:msub><mml:mi<br>mathvariant="normal"&gt;C<mml:mn>60</mml:mn></mml:mi<br></mml:msub>Junctions. Physical<br/>Review Letters. 2008. 100. 136801.</mml:math<br>                          | 2.9              | 120        |
| 60 | Stability, reconstruction, and electronic properties of diamond (100) and (111) surfaces. Physical Review B, 1993, 48, 18189-18202.                                                                                                                                                                                                        | 1.1              | 118        |
| 61 | Electronic structures of GaN edge dislocations. Physical Review B, 2000, 61, 16033-16039.                                                                                                                                                                                                                                                  | 1.1              | 117        |
| 62 | Graphene-Based Topological Insulator with an Intrinsic Bulk Band Gap above Room Temperature. Nano<br>Letters, 2013, 13, 6251-6255.                                                                                                                                                                                                         | 4.5              | 116        |
| 63 | Dislocations in diamond: Core structures and energies. Physical Review B, 2002, 65, .                                                                                                                                                                                                                                                      | 1.1              | 114        |
| 64 | Toward an Accurate Density-Functional Tight-Binding Description of Zinc-Containing Compounds.<br>Journal of Chemical Theory and Computation, 2009, 5, 605-614.                                                                                                                                                                             | 2.3              | 113        |
| 65 | Structures and energetics of hydrogen-terminated silicon nanowire surfaces. Journal of Chemical Physics, 2005, 123, 144703.                                                                                                                                                                                                                | 1.2              | 109        |
| 66 | Incoherent Electronâ^'Phonon Scattering in Octanethiols. Nano Letters, 2004, 4, 2109-2114.                                                                                                                                                                                                                                                 | 4.5              | 106        |
| 67 | Highly Conductive Boron Nanotubes: Transport Properties, Work Functions, and Structural<br>Stabilities. ACS Nano, 2011, 5, 4997-5005.                                                                                                                                                                                                      | 7.3              | 106        |
| 68 | New Family of Quantum Spin Hall Insulators in Two-dimensional Transition-Metal Halide with Large<br>Nontrivial Band Gaps. Nano Letters, 2015, 15, 7867-7872.                                                                                                                                                                               | 4.5              | 104        |
| 69 | xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Î<sup>2</sup></mml:mi><mml:mo>â<sup>°</sup>mathvariant="normal"&gt;G<mml:msub><mml:mi<br>mathvariant="normal"&gt;a<mml:mn>2</mml:mn></mml:mi<br></mml:msub><mml:msub><mml:mi<br>mathvariant="normal"&gt;O<mml:mn>3</mml:mn></mml:mi<br></mml:msub></mml:mo></mml:mrow> . | mo> < mml<br>1.1 | :mi<br>104 |
| 70 | Physical Review B, 2018, 97, .<br>I€ bonding versus electronic-defect generation: An examination of band-gap properties in amorphous carbon. Physical Review B, 1994, 50, 1489-1501.                                                                                                                                                       | 1.1              | 103        |
| 71 | Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. Journal of<br>Chemical Physics, 2006, 124, 094704.                                                                                                                                                                                                       | 1.2              | 103        |
| 72 | Structure and shape variations in intermediate-size copper clusters. Journal of Chemical Physics, 2006, 124, 024308.                                                                                                                                                                                                                       | 1.2              | 100        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Controllable Magnetic Doping of the Surface State of a Topological Insulator. Physical Review<br>Letters, 2013, 110, 126804.                                                                                  | 2.9 | 98        |
| 74 | DFT studies on helix formation in N-acetyl-(L-alanyl)n-N′-methylamide for n=1–20. Chemical Physics, 2000, 256, 15-27.                                                                                         | 0.9 | 96        |
| 75 | Novel NbS2 metallic nanotubes. Solid State Communications, 2000, 115, 635-638.                                                                                                                                | 0.9 | 95        |
| 76 | Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies.<br>Journal of Chemical Physics, 2002, 117, 788-799.                                                             | 1.2 | 95        |
| 77 | Simulation of Water Cluster Assembly on a Graphite Surface. Journal of Physical Chemistry B, 2005, 109, 14183-14188.                                                                                          | 1.2 | 95        |
| 78 | Toward Theoretical Analyis of Long-Range Proton Transfer Kinetics in Biomolecular Pumpsâ€. Journal<br>of Physical Chemistry A, 2006, 110, 548-563.                                                            | 1.1 | 95        |
| 79 | Revealing unusual chemical bonding in planar hyper-coordinate Ni <sub>2</sub> Ge and quasi-planar<br>Ni <sub>2</sub> Si two-dimensional crystals. Physical Chemistry Chemical Physics, 2015, 17, 26043-26048. | 1.3 | 95        |
| 80 | Ni/Mo Bimetallicâ€Oxideâ€Derived Heterointerfaceâ€Rich Sulfide Nanosheets with Coâ€Doping for Efficient<br>Alkaline Hydrogen Evolution by Boosting Volmer Reaction. Small, 2021, 17, e2006730.                | 5.2 | 95        |
| 81 | Performance of the AM1, PM3, and SCC-DFTB methods in the study of conjugated Schiff base molecules.<br>Chemical Physics, 2002, 277, 91-103.                                                                   | 0.9 | 93        |
| 82 | Molecular dynamics simulations of CFx (x=2,3) molecules at Si3N4 and SiO2 surfaces. Surface Science, 2006, 600, 453-460.                                                                                      | 0.8 | 93        |
| 83 | Nonadiabatic Molecular Dynamics for Thousand Atom Systems: A Tight-Binding Approach toward PYXAID. Journal of Chemical Theory and Computation, 2016, 12, 1436-1448.                                           | 2.3 | 93        |
| 84 | Structure and motion of basal dislocations in silicon carbide. Physical Review B, 2003, 68, .                                                                                                                 | 1.1 | 92        |
| 85 | Robust 2D Topological Insulators in van der Waals Heterostructures. ACS Nano, 2014, 8, 10448-10454.                                                                                                           | 7.3 | 88        |
| 86 | Molecular wires, solenoids, and capacitors by sidewall functionalization of carbon nanotubes.<br>Applied Physics Letters, 2000, 77, 1313-1315.                                                                | 1.5 | 86        |
| 87 | Approximate density-functional calculations of spin densities in large molecular systems and complex solids. Physical Chemistry Chemical Physics, 2001, 3, 5109-5114.                                         | 1.3 | 82        |
| 88 | 11-cis-Retinal Protonated Schiff Base:Â Influence of the Protein Environment on the Geometry of the<br>Rhodopsin Chromophoreâ€. Biochemistry, 2002, 41, 15259-15266.                                          | 1.2 | 82        |
| 89 | SCCâ€ÐFTB parameters for simulating hybrid goldâ€ŧhiolates compounds. Journal of Computational<br>Chemistry, 2015, 36, 2075-2087.                                                                             | 1.5 | 82        |
| 90 | Post-anti-van't Hoff-Le Bel motif in atomically thin germanium–copper alloy film. Physical Chemistry<br>Chemical Physics, 2015, 17, 17545-17551.                                                              | 1.3 | 81        |

| #   | Article                                                                                                                                                                                                                                          | IF                | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 91  | A priorimethod for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction. Physical Review B, 2007, 75, .                                                                                                  | 1.1               | 80        |
| 92  | Theoretical investigation of carbon defects and diffusion in $\hat{I}\pm$ -quartz. Physical Review B, 2001, 64, .                                                                                                                                | 1.1               | 75        |
| 93  | Response ofC60andCnto ultrashort laser pulses. Physical Review B, 2001, 64, .                                                                                                                                                                    | 1.1               | 75        |
| 94  | Theoretical tools for transport in molecular nanostructures. Physica B: Condensed Matter, 2002, 314,<br>86-90.                                                                                                                                   | 1.3               | 75        |
| 95  | Structural Evolution of Anionic Silicon Clusters SiN(20 ≤≤45). Journal of Physical Chemistry A,<br>2006, 110, 908-912.                                                                                                                           | 1.1               | 75        |
| 96  | Geometric and Electronic Structures of Carbon Nanotubes Adsorbed with Flavin Adenine<br>Dinucleotide:  A Theoretical Study. Journal of Physical Chemistry C, 2007, 111, 4069-4073.                                                               | 1.5               | 74        |
| 97  | Predicting Two-Dimensional C <sub>3</sub> B/C <sub>3</sub> N van der Waals p–n Heterojunction with<br>Strong Interlayer Electron Coupling and Enhanced Photocurrent. Journal of Physical Chemistry<br>Letters, 2018, 9, 858-862.                 | 2.1               | 74        |
| 98  | Toward Rational Design of Catalysts Supported on a Topological Insulator Substrate. ACS Catalysis, 2015, 5, 7063-7067.                                                                                                                           | 5.5               | 73        |
| 99  | Density-functional based tight-binding study of small gold clusters. New Journal of Physics, 2006, 8, 9-9.                                                                                                                                       | 1.2               | 72        |
| 100 | Structural and electronic properties of ZnO nanotubes from density functional calculations.<br>Nanotechnology, 2007, 18, 485713.                                                                                                                 | 1.3               | 72        |
| 101 | Density-functional-based predictions of Raman and IR spectra for small Si clusters. Physical Review B, 1997, 55, 2549-2555.                                                                                                                      | 1.1               | 71        |
| 102 | Stability, chemical bonding, and vibrational properties of amorphous carbon at different mass densities. Physical Review B, 1995, 52, 11837-11844.                                                                                               | 1.1               | 70        |
| 103 | Rare-earth defect pairs in GaN: <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mtext>LDA</mml:mtext><mml:mo>+</mml:mo><mml:mi>U</mml:mi>Physical Review B, 2009, 80, .</mml:mrow></mml:math> | nl: <b>m</b> row> |           |
| 104 | SiC <sub>7</sub> siligraphene: a novel donor material with extraordinary sunlight absorption.<br>Nanoscale, 2016, 8, 6994-6999.                                                                                                                  | 2.8               | 70        |
| 105 | Hybrid SCC-DFTB/molecular mechanical studies of H-bonded systems and<br>ofN-acetyl-(L-Ala)nN?-methylamide helices in water solution. International Journal of Quantum<br>Chemistry, 2000, 78, 459-479.                                           | 1.0               | 68        |
| 106 | Clitter in a 2D monolayer. Physical Chemistry Chemical Physics, 2015, 17, 26036-26042.                                                                                                                                                           | 1.3               | 68        |
| 107 | Quantum spin Hall states in graphene interacting with WS2 or WSe2. Applied Physics Letters, 2014, 105,                                                                                                                                           | 1.5               | 67        |
| 108 | Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding<br>Method, Journal of Chemical Theory and Computation, 2017, 13, 1737-1747                                                                           | 2.3               | 67        |

| #   | Article                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effect of oxygen on the growth of (101Ì,,0) GaN surfaces: The formation of nanopipes. Applied Physics<br>Letters, 1998, 73, 3530-3532.                                                                                                                                                                          | 1.5 | 66        |
| 110 | Stoichiometric and non-stoichiometric (101̄0) and (112̄0) surfaces in 2H–SiC: a theoretical study. Solid<br>State Communications, 1999, 111, 459-464.                                                                                                                                                           | 0.9 | 66        |
| 111 | Theoretical study of the chemical gap tuning in silicon nanowires. Physical Review B, 2007, 76, .                                                                                                                                                                                                               | 1.1 | 65        |
| 112 | Fingerprints of order and disorder in the electronic and optical properties of crystalline and<br>amorphous TiO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical<br>Review B, 2012, 86, . | 1.1 | 65        |
| 113 | Water splitting and the band edge positions of TiO2. Electrochimica Acta, 2016, 199, 27-34.                                                                                                                                                                                                                     | 2.6 | 64        |
| 114 | Intense Intrashell Luminescence of Eu-Doped Single ZnO Nanowires at Room Temperature by<br>Implantation Created Eu–O <sub>i</sub> Complexes. Nano Letters, 2014, 14, 4523-4528.                                                                                                                                 | 4.5 | 63        |
| 115 | Shape transition of medium-sized neutral silicon clusters. Physica Status Solidi (B): Basic Research, 2003, 240, 537-548.                                                                                                                                                                                       | 0.7 | 62        |
| 116 | Tubular structures of GaS. Physical Review B, 2004, 69, .                                                                                                                                                                                                                                                       | 1.1 | 62        |
| 117 | Shape, polarizability, and metallicity in silicon clusters. Physical Review A, 2005, 71, .                                                                                                                                                                                                                      | 1.0 | 62        |
| 118 | Effect of Polarization on the Opsin Shift in Rhodopsins. 1. A Combined QM/QM/MM Model for<br>Bacteriorhodopsin and Pharaonis Sensory Rhodopsin II. Journal of Physical Chemistry B, 2008, 112,<br>11462-11467.                                                                                                  | 1.2 | 62        |
| 119 | Stability of large vacancy clusters in silicon. Physical Review B, 2002, 65, .                                                                                                                                                                                                                                  | 1.1 | 61        |
| 120 | Unusual size dependence of the optical emission gap in small hydrogenated silicon nanoparticles.<br>Applied Physics Letters, 2007, 90, 123116.                                                                                                                                                                  | 1.5 | 61        |
| 121 | Charge corrections for supercell calculations of defects in semiconductors. Physica B: Condensed Matter, 2003, 340-342, 190-194.                                                                                                                                                                                | 1.3 | 60        |
| 122 | Versatile Single-Layer Sodium Phosphidostannate(II): Strain-Tunable Electronic Structure, Excellent<br>Mechanical Flexibility, and an Ideal Gap for Photovoltaics. Journal of Physical Chemistry Letters, 2015,<br>6, 2682-2687.                                                                                | 2.1 | 60        |
| 123 | Structural properties of amorphous hydrogenated carbon. IV. A molecular-dynamics investigation and comparison to experiments. Physical Review B, 1994, 50, 6709-6716.                                                                                                                                           | 1.1 | 59        |
| 124 | First-principles calculations of reconstructed [0001] ZnO nanowires. Physical Review B, 2007, 76, .                                                                                                                                                                                                             | 1.1 | 58        |
| 125 | Dislocations in diamond: Dissociation into partials and their glide motion. Physical Review B, 2003, 68,                                                                                                                                                                                                        | 1.1 | 57        |
| 126 | Optimal surface functionalization of silicon quantum dots. Journal of Chemical Physics, 2008, 128, 244714.                                                                                                                                                                                                      | 1.2 | 57        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Extensions of the Time-Dependent Density Functional Based Tight-Binding Approach. Journal of Chemical Theory and Computation, 2013, 9, 4901-4914.                                                                                                                                                                                                                                     | 2.3 | 57        |
| 128 | Oxygen deficiency in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mrow><mml:mi>Ti</mml:mi><mml:msub><mml:mi<br>mathvariant="normal"&gt;O<mml:mn>2</mml:mn></mml:mi<br></mml:msub></mml:mrow>:<br/>Similarities and differences between the Ti self-interstitial and the O vacancy in bulk rutile and<br/>anatase. Physical Review B, 2015, 92, .</mml:math<br> | 1.1 | 57        |
| 129 | Doped graphenes as anodes with large capacity for lithium-ion batteries. Journal of Materials<br>Chemistry A, 2016, 4, 13407-13413.                                                                                                                                                                                                                                                   | 5.2 | 57        |
| 130 | Dislocation Related Photoluminescence in Silicon. Physical Review Letters, 2001, 87, .                                                                                                                                                                                                                                                                                                | 2.9 | 55        |
| 131 | Treatment of Collinear and Noncollinear Electron Spin within an Approximate Density Functional<br>Based Methodâ€. Journal of Physical Chemistry A, 2007, 111, 5622-5629.                                                                                                                                                                                                              | 1.1 | 55        |
| 132 | Structure and elastic properties of amorphous silicon carbon nitride films. Physical Review B, 2001, 64, .                                                                                                                                                                                                                                                                            | 1.1 | 54        |
| 133 | Parametrization of the SCC-DFTB Method for Halogens. Journal of Chemical Theory and Computation, 2013, 9, 2939-2949.                                                                                                                                                                                                                                                                  | 2.3 | 54        |
| 134 | Coexistence of Three Ferroic Orders in the Multiferroic Compound<br>[(CH <sub>3</sub> ) <sub>4</sub> N][Mn(N <sub>3</sub> 33] with Perovskiteâ€Like Structure.<br>Chemistry - A European Journal, 2016, 22, 7863-7870.                                                                                                                                                                | 1.7 | 54        |
| 135 | Influence of dislocations on electron energy-loss spectra in gallium nitride. Physical Review B, 2002, 65, .                                                                                                                                                                                                                                                                          | 1.1 | 53        |
| 136 | New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and<br>SO3H-functionalized mesoporous Si-MCM-41 particles. Journal of Membrane Science, 2008, 316, 164-175.                                                                                                                                                                                        | 4.1 | 53        |
| 137 | Observation of "Stick―and "Handle―Intermediates along the Fullerene Road. Physical Review Letters,<br>2000, 84, 2421-2424.                                                                                                                                                                                                                                                            | 2.9 | 52        |
| 138 | Self-Interaction and Strong Correlation in DFTBâ€. Journal of Physical Chemistry A, 2007, 111, 5671-5677.                                                                                                                                                                                                                                                                             | 1.1 | 52        |
| 139 | The new dimension of silver. Physical Chemistry Chemical Physics, 2015, 17, 19695-19699.                                                                                                                                                                                                                                                                                              | 1.3 | 52        |
| 140 | Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies.<br>Journal of Physical Chemistry B, 2016, 120, 7297-7306.                                                                                                                                                                                                                             | 1.2 | 52        |
| 141 | Dynamic properties and structure formation of boron and carbon nitrides. Diamond and Related Materials, 1996, 5, 1031-1041.                                                                                                                                                                                                                                                           | 1.8 | 51        |
| 142 | Quasiparticle energies for large molecules: A tight-binding-based Green's-function approach. Physical<br>Review A, 2005, 71, .                                                                                                                                                                                                                                                        | 1.0 | 51        |
| 143 | Hydrogen and oxygen adsorption on ZnO nanowires: A first-principles study. Physical Review B, 2009, 79, .                                                                                                                                                                                                                                                                             | 1.1 | 51        |
| 144 | Novel Excitonic Solar Cells in Phosphorene–TiO <sub>2</sub> Heterostructures with Extraordinary Charge Separation Efficiency. Journal of Physical Chemistry Letters, 2016, 7, 1880-1887.                                                                                                                                                                                              | 2.1 | 51        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Plasmon-induced hot-carrier generation differences in gold and silver nanoclusters. Nanoscale, 2019, 11, 8604-8615.                                                                                                    | 2.8 | 51        |
| 146 | Importance of electronic self-consistency in the TDDFT based treatment of nonadiabatic molecular dynamics. European Physical Journal D, 2005, 35, 467-477.                                                             | 0.6 | 50        |
| 147 | Computational photochemistry of retinal proteins. Journal of Computer-Aided Molecular Design, 2006, 20, 511-518.                                                                                                       | 1.3 | 50        |
| 148 | Covalent functionalization of ZnO surfaces: A density functional tight binding study. Applied Physics<br>Letters, 2009, 94, 193109.                                                                                    | 1.5 | 50        |
| 149 | Theoretical Insights into CO <sub>2</sub> Activation and Reduction on the Ag(111) Monolayer<br>Supported on a ZnO(000 <u>1</u> ) Substrate. Journal of Physical Chemistry C, 2013, 117, 1804-1808.                     | 1.5 | 50        |
| 150 | Effect of Polarization on the Opsin Shift in Rhodopsins. 2. Empirical Polarization Models for Proteins.<br>Journal of Physical Chemistry B, 2008, 112, 11468-11478.                                                    | 1.2 | 49        |
| 151 | Theoretical prediction of topological insulator in ternary rare earth chalcogenides. Physical Review<br>B, 2010, 82, .                                                                                                 | 1.1 | 49        |
| 152 | Absorption and luminescence spectra of electroluminescent liquid crystals with triphenylene, pyrene<br>and perylene units. Liquid Crystals, 2001, 28, 1105-1113.                                                       | 0.9 | 48        |
| 153 | Observation of R30° diamond (111) on vapour-grown polycrystalline films. Surface Science, 1993, 295,<br>340-346.                                                                                                       | 0.8 | 47        |
| 154 | Dislocations in diamond: Electron energy-loss spectroscopy. Physical Review B, 2002, 65, .                                                                                                                             | 1.1 | 47        |
| 155 | Time-dependent versus static quantum transport simulations beyond linear response. Physical Review<br>B, 2011, 83, .                                                                                                   | 1.1 | 47        |
| 156 | Electronic structure of dense amorphous carbon. Physical Review B, 1994, 49, 11448-11451.                                                                                                                              | 1.1 | 46        |
| 157 | Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12:â€,Theory and experiment. Journal of Chemical Physics, 2004, 120, 5133-5147.                        | 1.2 | 46        |
| 158 | Polarons and oxygen vacancies at the surface of anatase TiO <sub>2</sub> . Physica Status Solidi -<br>Rapid Research Letters, 2014, 8, 583-586.                                                                        | 1.2 | 46        |
| 159 | Self-Consistent-Charge Density-Functional Tight-Binding Parameters for Cd–X (X = S, Se, Te)<br>Compounds and Their Interaction with H, O, C, and N. Journal of Chemical Theory and Computation,<br>2011, 7, 2262-2276. | 2.3 | 45        |
| 160 | Calculation of carrier-concentration-dependent effective mass in Nb-doped anatase crystals of TiO2.<br>Physical Review B, 2011, 83, .                                                                                  | 1.1 | 45        |
| 161 | Energy partition inC60-diamond-(111)-surface collisions: A molecular-dynamics simulation. Physical<br>Review B, 1994, 49, 11409-11414.                                                                                 | 1.1 | 44        |
| 162 | Evidence for Fe <sup>2+</sup> in Wurtzite Coordination: Iron Doping Stabilizes ZnO Nanoparticles.<br>Small, 2011, 7, 2879-2886.                                                                                        | 5.2 | 44        |

10

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Self-Consistent Potential Correction for Charged Periodic Systems. Physical Review Letters, 2021, 126, 076401.                                                                                                               | 2.9 | 44        |
| 164 | Atomic-scale characterization of boron diffusion in silicon. Physical Review B, 2001, 64, .                                                                                                                                  | 1.1 | 43        |
| 165 | Analysis of band-gap formation in squashed armchair carbon nanotubes. Physical Review B, 2005, 71, .                                                                                                                         | 1.1 | 43        |
| 166 | Analytical excited state forces for the time-dependent density-functional tight-binding method.<br>Journal of Computational Chemistry, 2007, 28, 2589-2601.                                                                  | 1.5 | 43        |
| 167 | Accurate gap levels and their role in the reliability of other calculated defect properties. Physica<br>Status Solidi (B): Basic Research, 2011, 248, 790-798.                                                               | 0.7 | 43        |
| 168 | Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation. RSC Advances, 2015, 5, 82346-82350.                                                                         | 1.7 | 43        |
| 169 | Resolving the Controversy about the Band Alignment between Rutile and Anatase: The Role of<br>OH <sup>–</sup> /H <sup>+</sup> Adsorption. Journal of Physical Chemistry C, 2015, 119, 21952-21958.                           | 1.5 | 43        |
| 170 | Electronic structure of overstretched DNA. Physical Review B, 2002, 66, .                                                                                                                                                    | 1.1 | 42        |
| 171 | Molecular Origins of Conduction Channels Observed in Shot-Noise Measurements. Nano Letters, 2006, 6, 2431-2437.                                                                                                              | 4.5 | 42        |
| 172 | Excited State Properties of Allylamine-Capped Silicon Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 2394-2400.                                                                                                   | 1.5 | 42        |
| 173 | An SCC-DFTB Repulsive Potential for Various ZnO Polymorphs and the ZnO–Water System. Journal of Physical Chemistry C, 2013, 117, 17004-17015.                                                                                | 1.5 | 42        |
| 174 | Construction of Nickelâ€Based Dual Heterointerfaces towards Accelerated Alkaline Hydrogen<br>Evolution via Boosting Multi‣tep Elementary Reaction. Advanced Functional Materials, 2021, 31,<br>2104827.                      | 7.8 | 42        |
| 175 | A theoretical study of boron and nitrogen doping in tetrahedral amorphous carbon. Solid State<br>Communications, 1996, 100, 549-553.                                                                                         | 0.9 | 41        |
| 176 | Density-functional theory calculations of bare and passivated triangular-shaped ZnO nanowires.<br>Applied Physics Letters, 2007, 91, 031914.                                                                                 | 1.5 | 41        |
| 177 | Carrier multiplication in van der Waals layered transition metal dichalcogenides. Nature<br>Communications, 2019, 10, 5488.                                                                                                  | 5.8 | 41        |
| 178 | Graphene nucleation on a surface-molten copper catalyst: quantum chemical molecular dynamics simulations. Chemical Science, 2014, 5, 3493-3500.                                                                              | 3.7 | 40        |
| 179 | Accurate single-particle determination of the band gap in silicon nanowires. Physical Review B, 2007, 76, .                                                                                                                  | 1.1 | 39        |
| 180 | Theoretical Exploration of the Structural, Electronic, and Magnetic Properties of ZnO Nanotubes<br>with Vacancies, Antisites, and Nitrogen Substitutional Defects. Journal of Physical Chemistry C, 2010,<br>114, 5760-5766. | 1.5 | 39        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations. Journal of Chemical Physics, 2011, 135, 034701.                                                                                                            | 1.2 | 39        |
| 182 | First principles theoretical study of the hole-assisted conversion of CO to CO2 on the anatase TiO2(101) surface. Journal of Chemical Physics, 2011, 134, 104701.                                                                                    | 1.2 | 39        |
| 183 | Theoretical investigations of homo- and heteronuclear bridged fullerene oligomers. Applied Physics<br>A: Materials Science and Processing, 1997, 64, 321-326.                                                                                        | 1.1 | 38        |
| 184 | Electronic structure of boron-interstitial clusters in silicon. Journal of Physics Condensed Matter, 2005, 17, S2141-S2153.                                                                                                                          | 0.7 | 38        |
| 185 | An SCC-DFTB/MD Study of the Adsorption of Zwitterionic Glycine on a Geminal Hydroxylated Silica<br>Surface in an Explicit Water Environment. Journal of Physical Chemistry C, 2011, 115, 9615-9621.                                                  | 1.5 | 38        |
| 186 | Ball-and-Chain Dimers from a Hot Fullerene Plasma. Journal of Physical Chemistry A, 1999, 103,<br>5275-5284.                                                                                                                                         | 1.1 | 37        |
| 187 | The absorption spectrum of hydrogenated silicon carbide nanocrystals from ab initio calculations.<br>Applied Physics Letters, 2010, 96, 051909.                                                                                                      | 1.5 | 37        |
| 188 | Vibrational signatures of fullerene oxides. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2287-2294.                                                                                                                              | 1.7 | 36        |
| 189 | Electronic behavior of rare-earth dopants in AlN: A density-functional study. Physical Review B, 2005, 72, .                                                                                                                                         | 1.1 | 36        |
| 190 | Theoretical Studies on Optical and Electronic Properties of Propionic-Acid-Terminated Silicon Quantum Dots. Journal of Chemical Theory and Computation, 2007, 3, 1518-1526.                                                                          | 2.3 | 36        |
| 191 | The absorption of oxygenated silicon carbide nanoparticles. Journal of Chemical Physics, 2010, 133, 064705.                                                                                                                                          | 1.2 | 36        |
| 192 | Proton Conductivity of SO <sub>3</sub> Hâ€Functionalized Benzene–Periodic Mesoporous Organosilica.<br>Small, 2011, 7, 1086-1097.                                                                                                                     | 5.2 | 36        |
| 193 | Comparison of Nb- and Ta-doping of anatase TiO2 for transparent conductor applications. Journal of Applied Physics, 2012, 112, .                                                                                                                     | 1.1 | 36        |
| 194 | Optically Driven Ultrafast Magnetic Order Transitions in Two-Dimensional Ferrimagnetic MXenes.<br>Journal of Physical Chemistry Letters, 2020, 11, 6219-6226.                                                                                        | 2.1 | 36        |
| 195 | A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited<br>State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. Journal of Chemical<br>Theory and Computation, 2020, 16, 4454-4469. | 2.3 | 36        |
| 196 | Amine-capped silicon quantum dots. Applied Physics Letters, 2008, 92, 053107.                                                                                                                                                                        | 1.5 | 35        |
| 197 | Common Defects Accelerate Charge Separation and Reduce Recombination in CNT/Molecule<br>Composites: Atomistic Quantum Dynamics. Journal of the American Chemical Society, 2021, 143,<br>6649-6656.                                                   | 6.6 | 35        |
| 198 | Ultralow Thermal Conductivity in Two-Dimensional MoO <sub>3</sub> . Nano Letters, 2021, 21, 4351-4356.                                                                                                                                               | 4.5 | 35        |

| #   | Article                                                                                                                                                                                                                                                                         | IF       | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 199 | Preparation of amorphous i-C films by ion-assisted methods. Thin Solid Films, 1989, 171, 157-169.                                                                                                                                                                               | 0.8      | 34        |
| 200 | Atomic-scale structure and electronic properties of highly tetrahedral hydrogenated amorphous carbon. Physical Review B, 1994, 50, 7940-7945.                                                                                                                                   | 1.1      | 34        |
| 201 | Hydrogen storage in carbon nanotubes. Synthetic Metals, 2001, 121, 1189-1190.                                                                                                                                                                                                   | 2.1      | 34        |
| 202 | Theoretical study of the adsorption of a PTCDA monolayer on S-passivated GaAs(l00). Applied Surface Science, 2004, 234, 173-177.                                                                                                                                                | 3.1      | 34        |
| 203 | Validity of the Slater-Janak transition-state model within the <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mrow><mml:mtext>LDA</mml:mtext><mml:mo>+</mml:mo><mml:mi>U</mml:mi>Physical Review B. 2008. 78</mml:mrow></mml:math<br> | nl:mrow> |           |
| 204 | CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface.<br>Journal of Materials Chemistry A, 2014, 2, 4885-4889.                                                                                                                   | 5.2      | 34        |
| 205 | Theoretical confirmation of the polaron model for the Mg acceptor in β-Ga2O3. Journal of Applied Physics, 2018, 124, .                                                                                                                                                          | 1.1      | 34        |
| 206 | Vibrational and electronic signatures of diamond surfaces. Thin Solid Films, 1996, 272, 314-330.                                                                                                                                                                                | 0.8      | 33        |
| 207 | Structure and energetics of SinNm clusters: Growth pathways in a heterogenous cluster system.<br>Journal of Chemical Physics, 2000, 112, 1295-1305.                                                                                                                             | 1.2      | 33        |
| 208 | Do Arsenic Interstitials Really Exist in As-Rich GaAs?. Physical Review Letters, 2001, 87, 045504.                                                                                                                                                                              | 2.9      | 33        |
| 209 | A theoretical investigation of dislocations in cubic and hexagonal gallium nitride. Physica Status<br>Solidi C: Current Topics in Solid State Physics, 2003, 0, 1684-1709.                                                                                                      | 0.8      | 33        |
| 210 | Diamond nucleation by energetic pure carbon bombardment. Physical Review B, 2005, 72, .                                                                                                                                                                                         | 1.1      | 33        |
| 211 | The symmetry of single-molecule conduction. Journal of Chemical Physics, 2006, 125, 184702.                                                                                                                                                                                     | 1.2      | 33        |
| 212 | Nitrogen(II) Oxide Charge Transfer Complexes on TiO <sub>2</sub> : A New Source for Visible-Light<br>Activity. Journal of Physical Chemistry C, 2015, 119, 4488-4501.                                                                                                           | 1.5      | 33        |
| 213 | Driven Liouville von Neumann Equation in Lindblad Form. Journal of Physical Chemistry A, 2016, 120, 3278-3285.                                                                                                                                                                  | 1.1      | 33        |
| 214 | Electron paramagnetic resonance and theoretical study of gallium vacancy in <b> <i>β</i> </b> -Ga2O3.<br>Applied Physics Letters, 2020, 117, .                                                                                                                                  | 1.5      | 33        |
| 215 | Crystal field effects in PrAl2. Solid State Communications, 1979, 29, 805-809.                                                                                                                                                                                                  | 0.9      | 32        |
| 216 | Hydrogenated Silicon Nanoparticles Relaxed in Excited States. Journal of Physical Chemistry C, 2007, 111, 12588-12593.                                                                                                                                                          | 1.5      | 32        |

| #   | Article                                                                                                                                                                                                                                                        | IF        | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 217 | The Green's Function Density Functional Tight-Binding (gDFTB) Method for Molecular Electronic<br>Conductionâ€. Journal of Physical Chemistry A, 2007, 111, 5692-5702.                                                                                          | 1.1       | 32            |
| 218 | Carbon in GaN: Calculations with an optimized hybrid functional. Physical Review B, 2019, 99, .                                                                                                                                                                | 1.1       | 32            |
| 219 | Computational Studies on Polymer Adhesion at the Surface of Î <sup>3</sup> -Al2O3. I. The Adsorption of Adhesive<br>Component Molecules from the Gas Phase. Journal of Physical Chemistry B, 2006, 110, 20460-20468.                                           | 1.2       | 31            |
| 220 | An efficient method for quantum transport simulations in the time domain. Chemical Physics, 2011, 391, 69-77.                                                                                                                                                  | 0.9       | 31            |
| 221 | Computational approach for structure design and prediction of optical properties in amorphous<br>TiO <sub>2</sub> thin-film coatings. Journal Physics D: Applied Physics, 2013, 46, 325302.                                                                    | 1.3       | 31            |
| 222 | Prediction of the quantum spin Hall effect in monolayers of transition-metal carbides MC (M = Ti, Zr,) Tj ETQq0 0                                                                                                                                              | 0 rgBT /O | verlock 10 Tf |
| 223 | Dislocations in hexagonal and cubic GaN. Journal of Physics Condensed Matter, 2000, 12, 10223-10233.                                                                                                                                                           | 0.7       | 30            |
| 224 | Simulation of physical properties of the chalcogenide glassAs2S3using a density-functional-based tight-binding method. Physical Review B, 2004, 69, .                                                                                                          | 1.1       | 30            |
| 225 | Insight into Proton Conduction of Immobilised Imidazole Systems Via Simulations and Impedance Spectroscopy. Fuel Cells, 2008, 8, 244-253.                                                                                                                      | 1.5       | 30            |
| 226 | A complete set of selfâ€consistent charge densityâ€functional tightâ€binding parametrization of zinc chalcogenides (ZnX; X=O, S, Se, and Te). Journal of Computational Chemistry, 2012, 33, 1165-1178.                                                         | 1.5       | 30            |
| 227 | xmins:mmi= nttp://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math                                                                                                                                                                                      | 2.9       | 30            |
| 228 | mathvariant="bold"sex/mmlmis chimbrins3 c/mmlmn> c/mmlmsubs c/mmlmath>Surface. Physical<br>Device<br>Transition Metal and Rare Earth Element Doped Zinc Oxide Nanowires for Optoelectronics. Physica<br>Status Solidi (B): Basic Research, 2019, 256, 1800604. | 0.7       | 30            |
| 229 | Tunable Surface Chemistry in Heterogeneous Bilayer Singleâ€Atom Catalysts for Electrocatalytic<br>NO <i><sub>x</sub></i> Reduction to Ammonia. Advanced Functional Materials, 2022, 32, .                                                                      | 7.8       | 30            |
| 230 | Dimer-row pattern formation in diamond (100) growth. Physical Review B, 1995, 52, 5426-5432.                                                                                                                                                                   | 1.1       | 29            |
| 231 | Understanding precursor-derived amorphous Si-C-N ceramics on the atomic scale. Physical Review B, 2002, 65, .                                                                                                                                                  | 1.1       | 29            |
| 232 | Automated Repulsive Parametrization for the DFTB Method. Journal of Chemical Theory and Computation, 2011, 7, 2654-2664.                                                                                                                                       | 2.3       | 29            |
| 233 | Oxygen vacancy diffusion in bare ZnO nanowires. Nanoscale, 2014, 6, 11882-11886.                                                                                                                                                                               | 2.8       | 29            |
| 234 | Proximity enhanced quantum spin Hall state in graphene. Carbon, 2015, 87, 418-423.                                                                                                                                                                             | 5.4       | 29            |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | A graphene-like Mg <sub>3</sub> N <sub>2</sub> monolayer: high stability, desirable direct band gap and promising carrier mobility. Physical Chemistry Chemical Physics, 2016, 18, 30379-30384.                            | 1.3  | 29        |
| 236 | Atomistic Analysis of Room Temperature Quantum Coherence in Two-Dimensional CdSe<br>Nanostructures. Nano Letters, 2017, 17, 2389-2396.                                                                                     | 4.5  | 29        |
| 237 | Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional<br>Nonmagnetic-Ferromagnetic van der Waals Heterostructures. Nano Letters, 2021, 21, 3237-3244.                                              | 4.5  | 29        |
| 238 | Electric field-induced disorder–order transition in organic polycrystalline films of<br>quasi-one-dimensional lead-phthalocyanine. Physica Status Solidi A, 1984, 86, 735-747.                                             | 1.7  | 28        |
| 239 | Electrical transport and electronic properties of a amorphous carbon thin films. Thin Solid Films, 1989, 182, 63-78.                                                                                                       | 0.8  | 28        |
| 240 | Tetragonal Crystalline Carbon Nitrides: Theoretical Predictions. Physical Review Letters, 2001, 86, 652-655.                                                                                                               | 2.9  | 28        |
| 241 | Straight and kinked 90°partial dislocations in diamond and 3C-SiC. Journal of Physics Condensed Matter, 2002, 14, 12741-12747.                                                                                             | 0.7  | 28        |
| 242 | Initial Steps toward Automating the Fitting of DFTBErep(r)â€. Journal of Physical Chemistry A, 2007, 111, 5637-5641.                                                                                                       | 1.1  | 28        |
| 243 | Donor levels in Si nanowires determined by hybrid-functional calculations. Physical Review B, 2009, 79, .                                                                                                                  | 1.1  | 28        |
| 244 | Detailed Simulation and Characterization of Highly Proton Conducting Sulfonic Acid Functionalized<br>Mesoporous Materials under Dry and Humidified Conditions. Journal of Physical Chemistry C, 2009,<br>113, 19218-19227. | 1.5  | 28        |
| 245 | Activity and Synergy Effects on a Cu/ZnO(000 <u>1</u> ) Surface Studied Using First-Principle Thermodynamics. Journal of Physical Chemistry Letters, 2012, 3, 2638-2642.                                                   | 2.1  | 28        |
| 246 | On the stabilization mechanisms of organic functional groups on ZnO surfaces. Physical Chemistry<br>Chemical Physics, 2012, 14, 15445.                                                                                     | 1.3  | 28        |
| 247 | Permittivity of Oxidized Ultra-Thin Silicon Films From Atomistic Simulations. IEEE Electron Device<br>Letters, 2015, 36, 1076-1078.                                                                                        | 2.2  | 28        |
| 248 | Molecular-dynamics subplantation studies of carbon beneath the diamond (111) surface. Physical Review B, 1995, 51, 4541-4546.                                                                                              | 1.1  | 27        |
| 249 | Magic number vacancy aggregates in Si and GaAs – structure and positron lifetime studies. Physica B:<br>Condensed Matter, 1999, 273-274, 501-504.                                                                          | 1.3  | 27        |
| 250 | Stabilizing excited-state silicon nanoparticle by surface oxidation. Applied Physics Letters, 2007, 91, .                                                                                                                  | 1.5  | 27        |
| 251 | Band gap engineering of GaN nanowires by surface functionalization. Applied Physics Letters, 2009, 94,<br>•                                                                                                                | 1.5  | 27        |
| 252 | Proton transport in functionalised additives for PEM fuel cells: contributions from atomistic simulations. Chemical Society Reviews, 2012, 41, 5143.                                                                       | 18.7 | 27        |

| #   | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Atomic Level Modeling of Extremely Thin Silicon-on-Insulator MOSFETs Including the Silicon Dioxide:<br>Electronic Structure. IEEE Transactions on Electron Devices, 2015, 62, 696-704.                                                                                     | 1.6  | 27        |
| 254 | Optimized hybrid functionals for defect calculations in semiconductors. Journal of Applied Physics, 2019, 126, 130901.                                                                                                                                                     | 1.1  | 27        |
| 255 | SCC-DFTB Parametrization for Boron and Boranes. Journal of Chemical Theory and Computation, 2012, 8, 1153-1163.                                                                                                                                                            | 2.3  | 26        |
| 256 | Feâ€Doped ZnO Nanoparticles: The Oxidation Number and Local Charge on Iron, Studied by<br><sup>57</sup> Fe Mößbauer Spectroscopy and DFT Calculations. Chemistry - A European Journal, 2013,<br>19, 3287-3291.                                                             | 1.7  | 26        |
| 257 | Phthalocyanine adsorption to graphene on Ir(111): Evidence for decoupling from vibrational spectroscopy. Journal of Chemical Physics, 2014, 141, 184308.                                                                                                                   | 1.2  | 26        |
| 258 | Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.<br>Journal of Chemical Theory and Computation, 2015, 11, 3357-3363.                                                                                                      | 2.3  | 26        |
| 259 | Inartificial Two-Dimensional Ge <sub>4</sub> Se <sub>9</sub> Janus Structures with Appropriate Direct<br>Band Gaps and Intrinsic Polarization Boosted Charge Separation for Photocatalytic Water Splitting.<br>Journal of Physical Chemistry Letters, 2020, 11, 3095-3102. | 2.1  | 26        |
| 260 | Ultrahigh Electron Thermal Conductivity in Tâ€Graphene, Biphenylene, and Netâ€Graphene. Advanced<br>Energy Materials, 2022, 12, .                                                                                                                                          | 10.2 | 26        |
| 261 | Entropy of point defects calculated within periodic boundary conditions. Physical Review B, 2004, 69, .                                                                                                                                                                    | 1.1  | 25        |
| 262 | A theoretical study of erbium in GaN. Physica B: Condensed Matter, 2006, 376-377, 512-515.                                                                                                                                                                                 | 1.3  | 25        |
| 263 | Atomistic Simulations of Self-Trapped Exciton Formation in Silicon Nanostructures: The Transition from Quantum Dots to Nanowires. Journal of Physical Chemistry C, 2009, 113, 12935-12938.                                                                                 | 1.5  | 25        |
| 264 | Monolayer PC3: A promising material for environmentally toxic nitrogen-containing multi gases.<br>Journal of Hazardous Materials, 2022, 422, 126761.                                                                                                                       | 6.5  | 25        |
| 265 | Stacking Engineering: A Boosting Strategy for 2D Photocatalysts. Journal of Physical Chemistry<br>Letters, 2021, 12, 10190-10196.                                                                                                                                          | 2.1  | 25        |
| 266 | Boron Centers in 4H-SiC. Materials Science Forum, 2001, 353-356, 455-458.                                                                                                                                                                                                  | 0.3  | 24        |
| 267 | Diffusion of nitrogen in silicon. Applied Physics Letters, 2005, 87, 021902.                                                                                                                                                                                               | 1.5  | 24        |
| 268 | Electron–phonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects. New Journal of Physics, 2008, 10, 065020.                                                                                                         | 1.2  | 24        |
| 269 | Excited state properties of Si quantum dots. Physica Status Solidi (B): Basic Research, 2012, 249, 401-412.                                                                                                                                                                | 0.7  | 24        |
| 270 | Stabilization Mechanism of ZnO Nanoparticles by Fe Doping. Physical Review Letters, 2014, 112, 106102.                                                                                                                                                                     | 2.9  | 24        |

| #   | Article                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Comparison of classical and tight-binding molecular dynamics for silicon growth. Physical Review B, 1996, 53, 16497-16503.                                                       | 1.1  | 23        |
| 272 | Tubular structures of germanium. Solid State Communications, 2001, 119, 653-657.                                                                                                 | 0.9  | 23        |
| 273 | Chalcogen passivation of GaAs(1 0 0) surfaces: theoretical study. Applied Surface Science, 2003, 212-213, 861-865.                                                               | 3.1  | 23        |
| 274 | Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin. Physical Chemistry Chemical Physics, 2003, 5, 1295-1300.                  | 1.3  | 23        |
| 275 | Theoretical study of rare earth point defects in GaN. Physica Status Solidi C: Current Topics in Solid<br>State Physics, 2008, 5, 2358-2360.                                     | 0.8  | 23        |
| 276 | Anomalous size dependence of the luminescence in reconstructed silicon nanoparticles. Applied Physics Letters, 2008, 93, .                                                       | 1.5  | 23        |
| 277 | Prediction of energetically optimal single-walled carbon nanotubes for hydrogen physisorption.<br>Applied Physics Letters, 2009, 95, 013116.                                     | 1.5  | 23        |
| 278 | Structure of amorphous hydrogenated carbon: experiment and computer simulation. Diamond and Related Materials, 1994, 3, 245-253.                                                 | 1.8  | 22        |
| 279 | Stability and reconstruction of diamond (100) and (111) surfaces. Diamond and Related Materials, 1994, 3, 966-974.                                                               | 1.8  | 22        |
| 280 | Stability of silicon carbide structures: from clusters to solid surfaces. Journal of Materials<br>Chemistry, 1996, 6, 1657-1663.                                                 | 6.7  | 22        |
| 281 | Tight-binding molecular-dynamics study ofaâ^'Si:H: Preparation, structure, and dynamics. Physical<br>Review B, 1999, 60, 5478-5484.                                              | 1.1  | 22        |
| 282 | Structure of Stacked Dimers of N-Methylated Watson–Crick Adenine–Thymine Base Pairs.<br>International Journal of Molecular Sciences, 2003, 4, 537-547.                           | 1.8  | 22        |
| 283 | New Type of Charged Defect in Amorphous Chalcogenides. Physical Review Letters, 2005, 94, 086401.                                                                                | 2.9  | 22        |
| 284 | Linear scaling time-dependent density-functional tight-binding method for absorption spectra of large systems. Physical Review B, 2007, 76, .                                    | 1.1  | 22        |
| 285 | N-doped ZnO nanowires: Surface segregation, the effect of hydrogen passivation and applications in spintronics. Physica Status Solidi (B): Basic Research, 2010, 247, 2195-2201. | 0.7  | 22        |
| 286 | Glycine Adsorption on (101ì0) ZnO Surfaces. Journal of Physical Chemistry C, 2011, 115, 6491-6495.                                                                               | 1.5  | 22        |
| 287 | Theoretical study of charge separation at the rutile–anatase interface. Physica Status Solidi - Rapid<br>Research Letters, 2014, 8, 566-570.                                     | 1.2  | 22        |
| 288 | Intermolecular conical intersections in molecular aggregates. Nature Nanotechnology, 2021, 16, 63-68.                                                                            | 15.6 | 22        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Structure and chemical bonding in high density amorphous carbon. Diamond and Related Materials, 1994, 3, 1056-1065.                                                                                      | 1.8 | 21        |
| 290 | Cage-forming tendencies in SinNm clusters. Chemical Physics Letters, 1998, 292, 235-242.                                                                                                                 | 1.2 | 21        |
| 291 | Infrared spectroscopic study of the morphology of 3,4,9,10-perylene tetracarboxylic dianhydride films grown on H-passivated Si(111). Journal of Physics Condensed Matter, 2003, 15, S2647-S2663.         | 0.7 | 21        |
| 292 | Atomistic Simulations of the ZnO(12Ì10)/Water Interface: A Comparison between First-Principles,<br>Tight-Binding, and Empirical Methods. Journal of Chemical Theory and Computation, 2012, 8, 4517-4526. | 2.3 | 21        |
| 293 | First-principles investigation of adsorption of N2O on the anatase TiO2 (101) and the CO pre-adsorbed<br>TiO2 surfaces. Computational Materials Science, 2012, 58, 24-30.                                | 1.4 | 21        |
| 294 | Two-dimensional rectangular tantalum carbide halides TaCX (X = Cl, Br, I): novel large-gap quantum<br>spin Hall insulators. 2D Materials, 2016, 3, 035018.                                               | 2.0 | 21        |
| 295 | Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Parameters for Ceria in 0D to 3D.<br>Journal of Physical Chemistry C, 2017, 121, 4593-4607.                                           | 1.5 | 21        |
| 296 | Fully Atomistic Real-Time Simulations of Transient Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 4355-4359.                                                                   | 2.1 | 21        |
| 297 | Efficient tight-binding approach for the study of strongly correlated systems. Physical Review B, 2007, 76, .                                                                                            | 1.1 | 20        |
| 298 | First-principles study of the size-dependent structural and electronic properties of thick-walled ZnO nanotubes. Solid State Communications, 2008, 148, 534-537.                                         | 0.9 | 20        |
| 299 | Accurate Hydrogen Bond Energies within the Density Functional Tight Binding Method. Journal of Physical Chemistry A, 2015, 119, 3535-3544.                                                               | 1.1 | 20        |
| 300 | Many-body electronic structure calculations of Eu-doped ZnO. Physical Review B, 2016, 93, .                                                                                                              | 1.1 | 20        |
| 301 | New quantum spin Hall insulator in two-dimensional MoS <sub>2</sub> with periodically distributed pores. Nanoscale, 2016, 8, 4915-4921.                                                                  | 2.8 | 20        |
| 302 | Stability and structure of amorphous hydrogenated carbons: a molecular dynamic investigation.<br>Solid State Communications, 1993, 85, 997-1000.                                                         | 0.9 | 19        |
| 303 | Structure and chemical bonding in amorphous diamond. Diamond and Related Materials, 1996, 5, 175-185.                                                                                                    | 1.8 | 19        |
| 304 | Coherent External and Internal Phonons in Quasi-One-Dimensional Organic Molecular Crystals.<br>Physical Review Letters, 2001, 86, 4060-4063.                                                             | 2.9 | 19        |
| 305 | The different behavior of nitrogen and phosphorus as n-type dopants in SiC. Physica B: Condensed<br>Matter, 2003, 340-342, 184-189.                                                                      | 1.3 | 19        |
| 306 | Relativistic Parametrization of the Self-Consistent-Charge Density-Functional Tight-Binding Method. 1.<br>Atomic Wave Functions and Energiesâ€. Journal of Physical Chemistry A, 2007, 111, 5712-5719.   | 1.1 | 19        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Role of Symmetry in the Stability and Electronic Structure of Titanium Dioxide Nanowires. Journal of<br>Physical Chemistry C, 2011, 115, 18494-18499.                                      | 1.5 | 19        |
| 308 | Molecular dynamic structure investigations of the adsorption and bonding of CxHy-hydrocarbon molecules/radicals on a diamond (111) surface. Applied Surface Science, 1992, 60-61, 281-290. | 3.1 | 18        |
| 309 | Investigation of the stability of the hexagonal–cubic born nitride prism interface. Journal of<br>Materials Chemistry, 1996, 6, 899-901.                                                   | 6.7 | 18        |
| 310 | A density-functional based tight-binding approach to GaAs surface reconstructions. Journal of<br>Physics Condensed Matter, 1997, 9, 7305-7315.                                             | 0.7 | 18        |
| 311 | Band structure and optical properties of germanium sheet polymers. Physical Review B, 2001, 64, .                                                                                          | 1.1 | 18        |
| 312 | Planar interstitial aggregates in Si. Journal of Physics Condensed Matter, 2002, 14, 12843-12853.                                                                                          | 0.7 | 18        |
| 313 | Fast QM/MM method and its application to molecular systems. Chemical Physics Letters, 2004, 397, 451-458.                                                                                  | 1.2 | 18        |
| 314 | Challenges for ab initio defect modeling. Materials Science and Engineering B: Solid-State Materials<br>for Advanced Technology, 2008, 154-155, 187-192.                                   | 1.7 | 18        |
| 315 | Comment on "Valence Surface Electronic States on Ge(001)â€. Physical Review Letters, 2009, 103, 189701; author reply 189702.                                                               | 2.9 | 18        |
| 316 | Native Defects in ZnO Nanowires: Atomic Relaxations, Relative Stability, and Defect Healing with<br>Organic Acids. Journal of Physical Chemistry C, 2010, 114, 18860-18865.                | 1.5 | 18        |
| 317 | Narrow bandgap covalent–organic frameworks with strong optical response in the visible and infrared. Journal of Materials Chemistry C, 2015, 3, 2244-2254.                                 | 2.7 | 18        |
| 318 | Efficient Automatized Density-Functional Tight-Binding Parametrizations: Application to Group IV<br>Elements. Journal of Chemical Theory and Computation, 2018, 14, 2947-2954.             | 2.3 | 18        |
| 319 | Theoretical Studies on Defects in SiC. Materials Science Forum, 1998, 264-268, 279-282.                                                                                                    | 0.3 | 17        |
| 320 | Defects of the SiC/SiO2 interface: energetics of the elementary steps of the oxidation reaction.<br>Physica B: Condensed Matter, 2003, 340-342, 1069-1073.                                 | 1.3 | 17        |
| 321 | Theoretical Study of the Interaction between Selected Adhesives and Oxide Surfaces. Journal of Physical Chemistry B, 2005, 109, 5060-5066.                                                 | 1.2 | 17        |
| 322 | Strain-Free Polarization Superlattice in Silicon Carbide: A Theoretical Investigation. Physical Review<br>Letters, 2006, 96, 236803.                                                       | 2.9 | 17        |
| 323 | Electrically Active Screw Dislocations in Helical ZnO and Si Nanowires and Nanotubes. ACS Nano, 2012, 6, 10042-10049.                                                                      | 7.3 | 17        |
| 324 | Temperature-Mediated Magnetism in Fe-Doped ZnO Semiconductors. Journal of Physical Chemistry C,<br>2013, 117, 5338-5342.                                                                   | 1.5 | 17        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Atomistic Modeling of Charge Transport across a Carbon Nanotube–Polyethylene Junction. Journal of<br>Physical Chemistry C, 2013, 117, 8020-8027.                                              | 1.5 | 17        |
| 326 | Controlling Electronic Structure and Transport Properties of Zigzag Graphene Nanoribbons by Edge<br>Functionalization with Fluorine. Journal of Physical Chemistry C, 2015, 119, 21227-21233. | 1.5 | 17        |
| 327 | Molecular dynamic investigations of amorphous carbon: π bonding vs. electronic defect generation.<br>Diamond and Related Materials, 1994, 3, 462-469.                                         | 1.8 | 16        |
| 328 | On the graphitization of diamond surfaces: the importance of twins. Diamond and Related Materials, 1996, 5, 102-107.                                                                          | 1.8 | 16        |
| 329 | Interstitial-based vacancy annealing in 4H–SiC. Physica B: Condensed Matter, 2001, 308-310, 645-648.                                                                                          | 1.3 | 16        |
| 330 | The 60° dislocation in diamond and its dissociation. Journal of Physics Condensed Matter, 2003, 15, S2951-S2960.                                                                              | 0.7 | 16        |
| 331 | Limits of the scaled shift correction to levels of interstitial defects in semiconductors. Physical<br>Review B, 2007, 75, .                                                                  | 1.1 | 16        |
| 332 | Atomistic Modeling of Gate-All-Around Si-Nanowire Field-Effect Transistors. IEEE Transactions on Electron Devices, 2007, 54, 3159-3167.                                                       | 1.6 | 16        |
| 333 | Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics. Nanoscale, 2014, 6, 7474.                                                     | 2.8 | 16        |
| 334 | First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces. Journal of Applied Physics, 2014, 115, .                                          | 1.1 | 16        |
| 335 | Controllable magnetic correlation between two impurities by spin-orbit coupling in graphene.<br>Scientific Reports, 2015, 5, 8943.                                                            | 1.6 | 16        |
| 336 | Directional-dependent thickness and bending rigidity of phosphorene. Physical Review B, 2016, 94, .                                                                                           | 1.1 | 16        |
| 337 | Crystal Field in the Laves Phase Compound PrNi <sub>2</sub> . Physica Status Solidi (B): Basic Research, 1982, 111, 507-512.                                                                  | 0.7 | 15        |
| 338 | NOON — A non-orthogonal localised orbital order-N method. Computer Physics Communications, 1999, 118, 200-212.                                                                                | 3.0 | 15        |
| 339 | Magnetism and the potential energy hypersurfaces of Fe53 to Fe57. Computational Materials Science, 2006, 35, 297-301.                                                                         | 1.4 | 15        |
| 340 | An Efficient LDA+UBased Tight Binding Approachâ€. Journal of Physical Chemistry A, 2007, 111, 5665-5670.                                                                                      | 1.1 | 15        |
| 341 | Modelling of Proton Diffusion in Immobilised Imidazole Systems for Application in Fuel Cells. Fuel Cells, 2008, 8, 236-243.                                                                   | 1.5 | 15        |
| 342 | Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments. Nanoscale, 2013, 5, 12178.                                             | 2.8 | 15        |

| #   | Article                                                                                                                                                                                                                                                                      | IF                                                         | CITATIONS                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|
| 343 | Two-dimensional hydrogenated molybdenum and tungsten dinitrides<br>MN <sub>2</sub> H <sub>2</sub> (M = Mo, W) as novel quantum spin hall insulators with high stability.<br>Nanoscale, 2017, 9, 1007-1013.                                                                   | 2.8                                                        | 15                                 |
| 344 | Electric Field Tunable Ultrafast Interlayer Charge Transfer in Graphene/WS <sub>2</sub><br>Heterostructure. Nano Letters, 2021, 21, 4403-4409.                                                                                                                               | 4.5                                                        | 15                                 |
| 345 | Revealing generation, migration, and dissociation of electron-hole pairs and current emergence in an organic photovoltaic cell. Science Advances, 2021, 7, .                                                                                                                 | 4.7                                                        | 15                                 |
| 346 | Artificial Intelligence Designer for Highly-Efficient Organic Photovoltaic Materials. Journal of<br>Physical Chemistry Letters, 2021, 12, 8847-8854.                                                                                                                         | 2.1                                                        | 15                                 |
| 347 | Vacancy clusters in plastically deformed semiconductors. Journal of Physics Condensed Matter, 2000, 12, 10071-10078.                                                                                                                                                         | 0.7                                                        | 14                                 |
| 348 | Theoretical study of a body-centered-tetragonal phase of carbon nitride. Physical Review B, 2001, 64, .                                                                                                                                                                      | 1.1                                                        | 14                                 |
| 349 | Signatures in Vibrational Spectra of Ice Nanotubes Revealed by a Density Functional Tight Binding<br>Method. Journal of Physical Chemistry C, 2007, 111, 14131-14138.                                                                                                        | 1.5                                                        | 14                                 |
| 350 | Hydrogen adsorption and etching on the Si-rich 3C-SiC(001)3×2surface: First-principles molecular<br>dynamics calculations. Physical Review B, 2009, 79, .                                                                                                                    | 1.1                                                        | 14                                 |
| 351 | Formation of Helices in Graphene Nanoribbons under Torsion. Journal of Physical Chemistry Letters, 2014, 5, 4083-4087.                                                                                                                                                       | 2.1                                                        | 14                                 |
| 352 | Coherent Real-Space Charge Transport Across a Donor–Acceptor Interface Mediated by Vibronic<br>Couplings. Nano Letters, 2019, 19, 8630-8637.                                                                                                                                 | 4.5                                                        | 14                                 |
| 353 | Significant Increase of Electron Thermal Conductivity in Dirac Semimetal Beryllonitrene by Doping<br>Beyond Van Hove Singularity. Advanced Functional Materials, 0, , 2111556.                                                                                               | 7.8                                                        | 14                                 |
| 354 | Paracyanogen-like structures in high-density amorphous carbon nitride. Carbon, 1999, 37, 545-548.                                                                                                                                                                            | 5.4                                                        | 13                                 |
| 355 | Statistical evaluation of the big bang search algorithm. Computational Materials Science, 2006, 35, 232-237.                                                                                                                                                                 | 1.4                                                        | 13                                 |
| 356 | Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons<br>Encapsulated in a Double-Walled Carbon Nanotube. Journal of Physical Chemistry Letters, 2013, 4,<br>1328-1333.                                                               | 2.1                                                        | 13                                 |
| 357 | How the aggregation of oxygen vacancies in rutile-based <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:msub><mml:mi>TiO</mml:mi><mml:mrow><mm<br>causes memristive behavior. Physical Review B, 2015, 92, .</mm<br></mml:mrow></mml:msub></mml:math<br> | l:m <b>n≱⊉</b> <td>1ml<b>18</b>n&gt;<mm< td=""></mm<></td> | 1ml <b>18</b> n> <mm< td=""></mm<> |
| 358 | Properties of the Free-Standing Two-Dimensional Copper Monolayer. Journal of Nanomaterials, 2016, 2016, 1-6.                                                                                                                                                                 | 1.5                                                        | 13                                 |
| 359 | Automatized Parameterization of the Densityâ€functional Tightâ€binding Method. II. Two"enter Integrals.<br>Journal of the Chinese Chemical Society, 2016, 63, 57-68.                                                                                                         | 0.8                                                        | 13                                 |
| 360 | Defect physics in intermediate-band materials: Insights from an optimized hybrid functional. Physical<br>Review B, 2017, 96, .                                                                                                                                               | 1.1                                                        | 13                                 |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Electrical and optical properties of plasma-deposited amorphous hydrocarbon films. Journal of<br>Non-Crystalline Solids, 1991, 137-138, 843-846.                                                                                                         | 1.5 | 12        |
| 362 | Basal plane partial dislocations in silicon carbide. Physica B: Condensed Matter, 2003, 340-342, 160-164.                                                                                                                                                | 1.3 | 12        |
| 363 | Density-functional tight-binding calculations of electronic states associated with grain boundaries in GaN. Physical Review B, 2005, 71, .                                                                                                               | 1.1 | 12        |
| 364 | Local Vibrational Excitation through Extended Electronic States at a Germanium Surface. Physical<br>Review Letters, 2009, 103, 266102.                                                                                                                   | 2.9 | 12        |
| 365 | Parameterization of Halogens for the Density-Functional Tight-Binding Description of Halide<br>Hydration. Journal of Chemical Theory and Computation, 2013, 9, 3321-3332.                                                                                | 2.3 | 12        |
| 366 | Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube. Nanoscale, 2013, 5, 3306.                                                                                                | 2.8 | 12        |
| 367 | Reduction of the TiO <sub>2–<i>x</i></sub> melting temperature induced by oxygen deficiency with<br>implications on experimental data accuracy and structural transition processes. Physica Status Solidi<br>- Rapid Research Letters, 2014, 8, 549-553. | 1.2 | 12        |
| 368 | A Self Energy Model of Dephasing in Molecular Junctions. Journal of Physical Chemistry C, 2016, 120, 16383-16392.                                                                                                                                        | 1.5 | 12        |
| 369 | Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes. Nanoscale, 2016, 8, 13168-13173.                                                                                                                   | 2.8 | 12        |
| 370 | Densely-packed bundles of collapsed carbon nanotubes: Atomistic and mesoscopic distinct element method modeling. Carbon, 2019, 152, 198-205.                                                                                                             | 5.4 | 12        |
| 371 | Collapsed carbon nanotubes: From nano to mesoscale via density functional theory-based tight-binding objective molecular modeling. Carbon, 2019, 143, 786-792.                                                                                           | 5.4 | 12        |
| 372 | Coupled quadrupole-phonon excitations: Inelastic Neutron scattering on van vleck paramagnet PrNi5.<br>Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1983, 120,<br>310-313.                                   | 0.9 | 11        |
| 373 | Structural and vibrational properties of C60 oligomers. Carbon, 1999, 37, 463-470.                                                                                                                                                                       | 5.4 | 11        |
| 374 | First-Principles Study of the Structural Stability and Electronic Properties of ZnS Nanowires. Journal of Physical Chemistry C, 2008, 112, 20291-20294.                                                                                                  | 1.5 | 11        |
| 375 | Molecular dynamics simulations of the amino acid-ZnO (10-10) interface: A comparison between density functional tight binding results. Journal of Chemical Physics, 2014, 140, 234707.                                                                   | 1.2 | 11        |
| 376 | Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared. Journal of Chemical Physics, 2015, 142, 244706.                                                                                             | 1.2 | 11        |
| 377 | Application of the Lany–Zunger polaron correction for calculating surface charge trapping. Journal of Physics Condensed Matter, 2017, 29, 394001.                                                                                                        | 0.7 | 11        |
| 378 | Ultrafast Real-Time Dynamics of CO Oxidation over an Oxide Photocatalyst. ACS Catalysis, 2020, 10, 13650-13658.                                                                                                                                          | 5.5 | 11        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | An adaptive design approach for defects distribution modeling in materials from first-principle calculations. Journal of Molecular Modeling, 2020, 26, 187.                                                                              | 0.8 | 11        |
| 380 | Dynamical evolution of the Schottky barrier as a determinant contribution to electron–hole pair stabilization and photocatalysis of plasmon-induced hot carriers. Nanoscale, 2022, 14, 2816-2825.                                        | 2.8 | 11        |
| 381 | Density functional tight binding approach utilized to study X-ray-induced transitions in solid materials. Scientific Reports, 2022, 12, 1551.                                                                                            | 1.6 | 11        |
| 382 | Tight-binding simulation of liquid and amorphous Si at zero pressure. Computational Materials Science, 1999, 13, 252-258.                                                                                                                | 1.4 | 10        |
| 383 | Optical bands related to dislocations in Si. Journal of Physics Condensed Matter, 2000, 12, 10123-10129.                                                                                                                                 | 0.7 | 10        |
| 384 | Theoretical investigation of the high-pressure behavior of nitric acid. Physical Review B, 2004, 69, .                                                                                                                                   | 1.1 | 10        |
| 385 | Ab initio, tight-binding and QM/MM calculations of the rhodopsin chromophore in its binding pocket.<br>Phase Transitions, 2004, 77, 31-45.                                                                                               | 0.6 | 10        |
| 386 | Influence of copper on the electronic properties of amorphous chalcogenides. Physical Review B, 2005, 72, .                                                                                                                              | 1.1 | 10        |
| 387 | Density Functional Tight Binding: Contributions from the American Chemical Society Symposium.<br>Journal of Physical Chemistry A, 2007, 111, 5607-5608.                                                                                  | 1.1 | 10        |
| 388 | Energetic and electronic properties of hydrogen passivated ZnO nanowires. Solid State<br>Communications, 2008, 148, 101-104.                                                                                                             | 0.9 | 10        |
| 389 | Possibility of a Field Effect Transistor Based on Dirac Particles in Semiconducting<br>Anatase-TiO <sub>2</sub> Nanowires. Nano Letters, 2013, 13, 1073-1079.                                                                            | 4.5 | 10        |
| 390 | Magnetic impurity affected by spin-orbit coupling: Behavior near a topological phase transition.<br>Physical Review B, 2013, 88, .                                                                                                       | 1.1 | 10        |
| 391 | Publisher's Note: Formation of NV centers in diamond: A theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects [Phys. Rev. B <b>89</b> , 075203 (2014)]. Physical Review B, 2014, 89, . | 1.1 | 10        |
| 392 | Charge transfer excitations from particle-particle random phase approximation—Opportunities and challenges arising from two-electron deficient systems. Journal of Chemical Physics, 2017, 146, 124104.                                  | 1.2 | 10        |
| 393 | Simulation of Impulsive Vibrational Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 2065-2072.                                                                                                                                 | 1.1 | 10        |
| 394 | Magneto-vibrational excitations in PrAl2. Journal of Physics F: Metal Physics, 1981, 11, 905-913.                                                                                                                                        | 1.6 | 9         |
| 395 | A density-functional based tight-binding approach to Ill–V semiconductor clusters. Journal of<br>Materials Chemistry, 1996, 6, 1649-1656.                                                                                                | 6.7 | 9         |
| 396 | Intrinsic Defect Complexes in α-SiC: the Formation of Antisite Pairs. Materials Science Forum, 2001, 353-356, 435-438.                                                                                                                   | 0.3 | 9         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | Properties of small carbon clusters inside theC60fullerene. Physical Review B, 2002, 65, .                                                                                                                           | 1.1 | 9         |
| 398 | A Cause for SiC/SiO <sub>2</sub> Interface States: the Site Selection of Oxygen in SiC. Materials Science Forum, 2003, 433-436, 535-538.                                                                             | 0.3 | 9         |
| 399 | The mechanism of defect creation and passivation at the SiC/SiO <sub>2</sub> interface. Journal Physics D: Applied Physics, 2008, 41, 049801-049801.                                                                 | 1.3 | 9         |
| 400 | DFTB <sup>+</sup> and lanthanides. Journal of Physics: Conference Series, 2010, 242, 012005.                                                                                                                         | 0.3 | 9         |
| 401 | How small nanodiamonds can be? MD study of the stability against graphitization. Diamond and Related Materials, 2013, 33, 78-84.                                                                                     | 1.8 | 9         |
| 402 | Ewald summation on a helix: A route to self-consistent charge density-functional based tight-binding objective molecular dynamics. Journal of Chemical Physics, 2013, 139, 094110.                                   | 1.2 | 9         |
| 403 | Towards atomic level simulation of electron devices including the semiconductor-oxide interface. , 2014, , .                                                                                                         |     | 9         |
| 404 | SLABCC: Total energy correction code for charged periodic slab models. Computer Physics Communications, 2019, 240, 101-105.                                                                                          | 3.0 | 9         |
| 405 | Defect calculations with hybrid functionals in layered compounds and in slab models. Physical Review B, 2019, 100, .                                                                                                 | 1.1 | 9         |
| 406 | Water Reactions on Reconstructed Rutile TiO <sub>2</sub> : A Density Functional Theory/Density Functional Theory/Density Functional Tight Binding Approach. Journal of Physical Chemistry C, 2021, 125, 13234-13246. | 1.5 | 9         |
| 407 | Koopmans-compliant screened exchange potential with correct asymptotic behavior for semiconductors. Physical Review B, 2020, 102, .                                                                                  | 1.1 | 9         |
| 408 | Ultrafast Light-Induced Ferromagnetic State in Transition Metal Dichalcogenides Monolayers. Journal of Physical Chemistry Letters, 2022, 13, 2765-2771.                                                              | 2.1 | 9         |
| 409 | A density functional tight-binding approach for modelling Ge and GeH structures. Journal of Physics<br>Condensed Matter, 1996, 8, 6873-6888.                                                                         | 0.7 | 8         |
| 410 | p- and n-Type doping in carbon modifications. Journal of Non-Crystalline Solids, 1998, 227-230, 607-611.                                                                                                             | 1.5 | 8         |
| 411 | Molecular Devices Simulations Based on Density Functional Tight-Binding. Journal of Computational Electronics, 2002, 1, 109-112.                                                                                     | 1.3 | 8         |
| 412 | The Nature of the Shallow Boron Acceptor in SiC - Localization versus Effective Mass Theory.<br>Materials Science Forum, 2004, 457-460, 711-714.                                                                     | 0.3 | 8         |
| 413 | Atomistic Simulation of the Electronic Transport in Organic Nanostructures: Electron-Phonon and Electron-Electron Interactions. Journal of Computational Electronics, 2005, 4, 79-82.                                | 1.3 | 8         |
| 414 | Negative differential gain in quantum dot systems: Interplay of structural properties and many-body<br>effects. Applied Physics Letters, 2014, 104, 242108.                                                          | 1.5 | 8         |

| #   | Article                                                                                                                                                                                                         | IF          | CITATIONS      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 415 | The role of water co-adsorption on the modification of ZnO nanowires using acetic acid. Physical Chemistry Chemical Physics, 2014, 16, 8509-8514.                                                               | 1.3         | 8              |
| 416 | Electronic Properties of Defective MoS <sub>2</sub> Monolayers Subject to Mechanical<br>Deformations: A Firstâ€Principles Approach. Physica Status Solidi (B): Basic Research, 2020, 257, 1900541.              | 0.7         | 8              |
| 417 | Photoinduced charge-transfer in chromophore-labeled gold nanoclusters: quantum evidence of the critical role of ligands and vibronic couplings. Nanoscale, 2021, 13, 6786-6797.                                 | 2.8         | 8              |
| 418 | Robust Giant Magnetoresistance in 2D Van der Waals Molecular Magnetic Tunnel Junctions. ACS<br>Applied Materials & Interfaces, 2021, 13, 36098-36105.                                                           | 4.0         | 8              |
| 419 | Phononic Thermal Transport along Graphene Grain Boundaries: A Hidden Vulnerability. Advanced Science, 2021, 8, 2101624.                                                                                         | 5.6         | 8              |
| 420 | Line width of magnetic excitations in the cubic Laves-Phase compounds PrNi2, PrAl2. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1983, 120, 176-179.               | 0.9         | 7              |
| 421 | Structural and vibrational properties of carbon impurities in crystalline silicon. Semiconductor Science and Technology, 2001, 16, R41-R49.                                                                     | 1.0         | 7              |
| 422 | Germanium–hydrogen pairs in silicon. Journal of Physics Condensed Matter, 2003, 15, S2803-S2807.                                                                                                                | 0.7         | 7              |
| 423 | Molecular force field parametrization using multi-objective evolutionary algorithms. , 0, , .                                                                                                                   |             | 7              |
| 424 | The Search for Near Interface Oxide Traps - First-Principles Calculations on Intrinsic SiO <sub>2</sub><br>Defects. Materials Science Forum, 2005, 483-485, 569-572.                                            | 0.3         | 7              |
| 425 | Firstâ€principles calculations of atomic and electronic properties of ZnO nanostructures. Physica<br>Status Solidi (B): Basic Research, 2010, 247, 2581-2593.                                                   | 0.7         | 7              |
| 426 | The atomic structure of ternary amorphous TixSi1â^'xO2hybrid oxides. Journal of Physics Condensed<br>Matter, 2014, 26, 253201.                                                                                  | 0.7         | 7              |
| 427 | Vibronic dephasing model for coherent-to-incoherent crossover in DNA. Physical Review B, 2018, 97, .                                                                                                            | 1.1         | 7              |
| 428 | Structural, electronic, and thermodynamic properties of TiO 2 /organic clusters: performance of<br>DFTB method with different parameter sets. International Journal of Quantum Chemistry, 2021, 121,<br>e26427. | 1.0         | 7              |
| 429 | Activity and Mechanism Mapping of Photocatalytic NO2 Conversion on the Anatase TiO2(101) Surface.<br>Journal of Physical Chemistry Letters, 2021, 12, 7708-7716.                                                | 2.1         | 7              |
| 430 | Universal co-existence of photovoltaics and ferroelectricity from a two-dimensional 3R bilayer BX (X) Tj ETQq0 C                                                                                                | ) 0 rgBT /O | iverlock 10 Ti |
| 431 | Structural models for the reconstruction of the surface and their relative stabilities. Journal of Physics Condensed Matter, 1998, 10, 4523-4532.                                                               | 0.7         | 6              |

<sup>432</sup> Mechanism for dicarbon defect formation in AlAs and GaAs. Physica B: Condensed Matter, 1999, 273-274, 1.3 6

| #   | Article                                                                                                                                                                                                                                                                                                               | IF     | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 433 | (10-10)– and (11-20)–Surfaces in 2H–, 4H– and 6H–SiC. Materials Science Forum, 2000, 338-342, 365                                                                                                                                                                                                                     | 5-068. | 6         |
| 434 | Modelling electron energy-loss spectra of dislocations in silicon and diamond. Physica B: Condensed<br>Matter, 2001, 308-310, 577-580.                                                                                                                                                                                | 1.3    | 6         |
| 435 | SiO2-coated carbon nanotubes: theory and experiment. International Journal of Materials Research, 2002, 93, 455-458.                                                                                                                                                                                                  | 0.8    | 6         |
| 436 | Strain relaxation in LT-GaAs by the agglomeration of As antisites. Physica B: Condensed Matter, 2003, 340-342, 293-298.                                                                                                                                                                                               | 1.3    | 6         |
| 437 | Effect of self-consistency and electron correlation on the spatial extension of bipolaronic defects.<br>Organic Electronics, 2004, 5, 167-174.                                                                                                                                                                        | 1.4    | 6         |
| 438 | Concurrent Coupling of Length Scales in Solid State Systems. , 2005, , 251-291.                                                                                                                                                                                                                                       |        | 6         |
| 439 | Geometric and Excited-State Properties of 1,4-Bis(benzothiazolylvinyl)benzene Interacting with 2,2â€ <sup>-</sup> ,2â€ <sup>-</sup> Ââ€ <sup>-</sup> -(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole] Studied by a Density-Functional Tight-Binding Method. Journal of Physical Chemistry B, 2006, 110, 20847-20851. | 1.2    | 6         |
| 440 | Quasiparticle correction for electronic transport in molecular wires. Journal of Computational Electronics, 2007, 6, 345-348.                                                                                                                                                                                         | 1.3    | 6         |
| 441 | Joule heating in molecular tunnel junctions: application to C60. Journal of Computational Electronics, 2008, 7, 384-389.                                                                                                                                                                                              | 1.3    | 6         |
| 442 | SENSITIVITY OF HYDROGENATED SILICON NANODOT ON SMALL POLAR MOLECULES. Journal of Theoretical and Computational Chemistry, 2009, 08, 299-316.                                                                                                                                                                          | 1.8    | 6         |
| 443 | Plasma and optical thin film technologies. , 2011, , .                                                                                                                                                                                                                                                                |        | 6         |
| 444 | Substrate mediated stabilization of methylphosphonic acid on ZnO non-polar surfaces'. Surface<br>Science, 2012, 606, 289-292.                                                                                                                                                                                         | 0.8    | 6         |
| 445 | Identification of defects at the interface between 3Câ€SiC quantum dots and a SiO <sub>2</sub><br>embedding matrix. Physica Status Solidi (B): Basic Research, 2012, 249, 360-367.                                                                                                                                    | 0.7    | 6         |
| 446 | Molecular dynamics simulations of the tribological behaviour of a water-lubricated amorphous<br>carbon–fluorine PECVD coating. Modelling and Simulation in Materials Science and Engineering, 2013,<br>21, 055027.                                                                                                    | 0.8    | 6         |
| 447 | Atomistic modeling of dynamical quantum transport. Physica Status Solidi (B): Basic Research, 2013, 250, 2349-2354.                                                                                                                                                                                                   | 0.7    | 6         |
| 448 | Polar EuO(111) on Ir(111): A two-dimensional oxide. Physical Review B, 2014, 89, .                                                                                                                                                                                                                                    | 1.1    | 6         |
| 449 | Density functional based tight-binding parametrization of hafnium oxide: Simulations of amorphous structures. Physical Review B, 2018, 98, .                                                                                                                                                                          | 1.1    | 6         |
| 450 | Optoelectronic Properties of Zinc Oxide: A Firstâ€Principles Investigation Using the Tran–Blaha<br>Modified Becke–Johnson Potential. Physica Status Solidi (B): Basic Research, 2019, 256, 1800380.                                                                                                                   | 0.7    | 6         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | Electronic Properties and Charge Transfer of Topologically Protected States in Hybrid Bismuthene<br>Layers. Journal of Physical Chemistry C, 2020, 124, 11708-11715.                                  | 1.5 | 6         |
| 452 | Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates. ACS Nano, 2022, 16, 4693-4704.                                                                                        | 7.3 | 6         |
| 453 | Structure formation in low-energy methyl radical collisions onto diamond (100): an MD study.<br>Diamond and Related Materials, 1996, 5, 169-174.                                                      | 1.8 | 5         |
| 454 | Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and<br>GaN. Journal of Physics Condensed Matter, 2002, 14, 12793-12800.                                  | 0.7 | 5         |
| 455 | Global optimization of silicon nanoclusters. Applied Surface Science, 2004, 226, 108-113.                                                                                                             | 3.1 | 5         |
| 456 | Dislocation Structures in Diamond: Density-Functional Based Modelling and High-Resolution Electron Microscopy. Defect and Diffusion Forum, 2004, 226-228, 11-30.                                      | 0.4 | 5         |
| 457 | Mechanical properties of solid C <sub>60</sub> studied with density functional tight binding method augmented by an empirical dispersion term. Journal of Physics Condensed Matter, 2008, 20, 275240. | 0.7 | 5         |
| 458 | Size and composition dependent electronic and optical properties of GaxAl1â^'xAs and AlxGa1â^'xAs alloyed nanocrystals. Applied Physics Letters, 2009, 94, 123105.                                    | 1.5 | 5         |
| 459 | Gate-Controlled Donor Activation in Silicon Nanowires. Nano Letters, 2010, 10, 3791-3795.                                                                                                             | 4.5 | 5         |
| 460 | Silicon–carbon nanocomposites: Theoretical investigations. Journal of Molecular Structure, 2010,<br>982, 87-90.                                                                                       | 1.8 | 5         |
| 461 | Preface: Focus on Functional Oxides. Physica Status Solidi - Rapid Research Letters, 2014, 8, 451-452.                                                                                                | 1.2 | 5         |
| 462 | Structural Evolution of Cu/ZnO Active Sites: From Reactive Environment to Ultrahigh Vacuum.<br>ChemCatChem, 2014, 6, 2322-2326.                                                                       | 1.8 | 5         |
| 463 | Dephasing in a Molecular Junction Viewed from a Time-Dependent and a Time-Independent Perspective.<br>Journal of Physical Chemistry C, 2019, 123, 9590-9599.                                          | 1.5 | 5         |
| 464 | Magnetic Moment of Iron Clusters with 109, 110, 111, and 147 Atoms. Journal of Computational and Theoretical Nanoscience, 2007, 4, 264-269.                                                           | 0.4 | 5         |
| 465 | Carrier doping-induced strong magnetoelastic coupling in 2D lattice. Nanoscale, 2022, 14, 3261-3268.                                                                                                  | 2.8 | 5         |
| 466 | Anisotropic Phononic and Electronic Thermal Transport in BeN <sub>4</sub> . Journal of Physical<br>Chemistry Letters, 2022, , 4501-4505.                                                              | 2.1 | 5         |
| 467 | Light-Controlled Ultrafast Magnetic State Transition in Antiferromagnetic–Ferromagnetic van der<br>Waals Heterostructures. Journal of Physical Chemistry Letters, 2022, 13, 6223-6229.                | 2.1 | 5         |
| 468 | Electrical Conductivity in the Hubbard Model Using the Functional Integral Technique. Physica Status<br>Solidi (B): Basic Research, 1976, 74, K101.                                                   | 0.7 | 4         |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | Theoretical Studies on Defects in SiC. Materials Science Forum, 1997, 258-263, 739-744.                                                                                                        | 0.3 | 4         |
| 470 | The formation of nanopipes caused by donor impurities in GaN: A theoretical study for the case of oxygen. Philosophical Magazine Letters, 1999, 79, 147-152.                                   | 0.5 | 4         |
| 471 | Irradiation Experiment Revisited – Stability and Positron Lifetime of Large Vacancy Clusters in Silicon.<br>Materials Science Forum, 2001, 363-365, 135-137.                                   | 0.3 | 4         |
| 472 | Atomistic simulation of the bombardment process during the BEN phase of chemical vapor deposition (CVD) of diamond. Diamond and Related Materials, 2002, 11, 513-518.                          | 1.8 | 4         |
| 473 | Platinum and gold dihydrides in silicon. Physica B: Condensed Matter, 2003, 340-342, 668-672.                                                                                                  | 1.3 | 4         |
| 474 | Electron Transport Suppression from Tipâ^ï€ State Interaction on Si(100)-2 × 1 Surfaces. Journal of Chemical Theory and Computation, 2011, 7, 707-712.                                         | 2.3 | 4         |
| 475 | Charge-doping-induced phase transitions in hydrogenated and fluorinated graphene. Physical Review B, 2014, 90, .                                                                               | 1.1 | 4         |
| 476 | The dielectric response of low-k interlayer dielectric material characterized by electron energy loss spectroscopy. Microporous and Mesoporous Materials, 2014, 187, 23-28.                    | 2.2 | 4         |
| 477 | Theoretical prediction of carbon dioxide reduction to methane at coordinatively unsaturated ferric site in the presence of Cu impurities. Physical Chemistry Chemical Physics, 2014, 16, 3515. | 1.3 | 4         |
| 478 | Optically and Electrically Controllable Adatom Spin–orbital Dynamics in Transition Metal<br>Dichalcogenides. Nano Letters, 2017, 17, 6721-6726.                                                | 4.5 | 4         |
| 479 | Intrinsic defects of GaSe. Journal of Physics Condensed Matter, 2020, 32, 285503.                                                                                                              | 0.7 | 4         |
| 480 | Fano Resonance and Incoherent Interlayer Excitons in Molecular van der Waals Heterostructures.<br>Nano Letters, 2022, 22, 911-917.                                                             | 4.5 | 4         |
| 481 | Theoretical Study of Antisite Aggregation in α-SiC. Materials Science Forum, 2003, 433-436, 491-494.                                                                                           | 0.3 | 3         |
| 482 | A Self-Consistent Charge Density-Functional Based Tight-Binding Scheme for Large Biomolecules. ,<br>2005, , 357-376.                                                                           |     | 3         |
| 483 | The Art and Science of an Analytic Potential. , 2005, , 23-40.                                                                                                                                 |     | 3         |
| 484 | Residual stresses modelled by MD simulation applied to PVD DC sputter deposition. Surface and Coatings Technology, 2005, 200, 1600-1603.                                                       | 2.2 | 3         |
| 485 | Point Defects and their Aggregation in Silicon Carbide. Materials Science Forum, 2007, 556-557, 439-444.                                                                                       | 0.3 | 3         |
| 486 | The Mechanism of Interface State Passivation by NO. Materials Science Forum, 2007, 556-557, 541-544.                                                                                           | 0.3 | 3         |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 487 | Quantum mechanical and molecular mechanical simulation approaches bridging length and time<br>scales for simulation of interface reactions in realistic environments. European Physical Journal:<br>Special Topics, 2009, 177, 59-81. | 1.2 | 3         |
| 488 | Influence of Oxygen on the Absorption of Silicon Carbide Nanoparticles. Materials Science Forum, 2011, 679-680, 520-523.                                                                                                              | 0.3 | 3         |
| 489 | Activation mechanism of carbon monoxide on α-Fe <sub>2</sub> O <sub>3</sub> (0001) surface studied by using first principle calculations. Applied Physics Letters, 2012, 101, 041603.                                                 | 1.5 | 3         |
| 490 | Permutation-invariant collective variable to track and drive vacancy dynamics in simulations of solids. Physical Review B, 2013, 88, .                                                                                                | 1.1 | 3         |
| 491 | The spectral adjustment in nanoscale transport combined with the density functional based tight binding method. Computational Materials Science, 2017, 133, 14-21.                                                                    | 1.4 | 3         |
| 492 | Possibilities and Limits of Decreasing the Gap of Anatase TiO <sub>2</sub> by Alloying with Nitrogen.<br>Journal of Physical Chemistry C, 2021, 125, 3192-3197.                                                                       | 1.5 | 3         |
| 493 | Identification of the Nitrogen Interstitial as Origin of the 3.1 eV Photoluminescence Band in Hexagonal<br>Boron Nitride. Physica Status Solidi (B): Basic Research, 2021, 258, 2100031.                                              | 0.7 | 3         |
| 494 | Using DFTB to Model Photocatalytic Anatase–Rutile TiO2 Nanocrystalline Interfaces and Their Band Alignment. Journal of Chemical Theory and Computation, 2021, 17, 5239-5247.                                                          | 2.3 | 3         |
| 495 | Tuning electronic and optical properties of bismuth monolayers by molecular adsorption. Surface Science, 2021, 710, 121849.                                                                                                           | 0.8 | 3         |
| 496 | Political changes in East Germany with lasting impact on computer simulations of carbon-based materials. Computational Materials Science, 1994, 2, 19-38.                                                                             | 1.4 | 2         |
| 497 | Structural and Electronic Properties of Line Defects in GaN. Materials Research Society Symposia<br>Proceedings, 1999, 595, 1.                                                                                                        | 0.1 | 2         |
| 498 | Electrical Activity of Isolated Oxygen Defects in SiC. Materials Science Forum, 2001, 353-356, 463-466.                                                                                                                               | 0.3 | 2         |
| 499 | Influence of the growth-surface on the incorporation of phosphorus in SiC. Applied Surface Science, 2005, 243, 345-354.                                                                                                               | 3.1 | 2         |
| 500 | The effect of charge on kink migration at 90° partial dislocations in SiC. Physica Status Solidi (A)<br>Applications and Materials Science, 2005, 202, 877-882.                                                                       | 0.8 | 2         |
| 501 | Agglomeration of As Antisites in As-Rich Low-Temperature GaAs: Nucleation without a Critical<br>Nucleus Size. Physical Review Letters, 2005, 95, 125502.                                                                              | 2.9 | 2         |
| 502 | Ab initio simulation of interface reactions as a foundation of understanding polymorphism. European<br>Physical Journal: Special Topics, 2007, 149, 127-144.                                                                          | 1.2 | 2         |
| 503 | Heat dissipation and non-equilibrium phonon distributions in molecular devices. Journal of Computational Electronics, 2007, 6, 335-339.                                                                                               | 1.3 | 2         |
| 504 | Annealing simulations to determine the matrix interface structure of SiC quantum dots embedded in<br>SiO <sub>2</sub> . Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 407-410.                             | 0.8 | 2         |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF           | CITATIONS                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|
| 505 | Time-Dependent Density Functional Calculations on Hydrogenated Silicon Carbide Nanocrystals.<br>Materials Science Forum, 2011, 679-680, 516-519.                                                                                                                                                           | 0.3          | 2                             |
| 506 | Dynamic Simulation of the Migration of Oxygen Vacancy Defects in Rutile TiO2. Materials Research<br>Society Symposia Proceedings, 2012, 1430, 49.                                                                                                                                                          | 0.1          | 2                             |
| 507 | Electronic and Optical Properties of Functionalized GaNâ€(101Â⁻0) Surfaces using Hybridâ€Density<br>Functionals. Physica Status Solidi (B): Basic Research, 2019, 256, 1800455.                                                                                                                            | 0.7          | 2                             |
| 508 | Exploring charge density distribution and electronic properties of hybrid organic-germanium layers.<br>Physical Chemistry Chemical Physics, 2020, 22, 22055-22065.                                                                                                                                         | 1.3          | 2                             |
| 509 | Possibility of Doping <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:msub><mml:mrow><mml:mi>Cu</mml:mi><mml:mi>Ga</mml:mi><mml:mi>Se<i>n</i> -Type by Hydrogen. Physical Review Applied, 2021, 15, .</mml:mi></mml:mrow></mml:msub></mml:math> | ni>ık\$mml:ı | mrøw> <mral:< td=""></mral:<> |
| 510 | Reversible tuning the optical properties of defective TMDs monolayers. Physica Status Solidi (B): Basic<br>Research, 0, , 2000524.                                                                                                                                                                         | 0.7          | 2                             |
| 511 | Simulations of Inelastic Tunnelling in Molecular Bridges. Springer Proceedings in Physics, 2006, ,<br>183-186.                                                                                                                                                                                             | 0.1          | 2                             |
| 512 | Tuning Magnetic Anisotropy in Two-Dimensional Metal–Semiconductor Janus van der Waals<br>Heterostructures. Journal of Physical Chemistry Letters, 2021, 12, 11308-11315.                                                                                                                                   | 2.1          | 2                             |
| 513 | Group three nitride clusters as promising components for nanoelectronics. Materials Today Chemistry, 2022, 23, 100751.                                                                                                                                                                                     | 1.7          | 2                             |
| 514 | Transverse electronic transport through nucleobase-pairs of a DNA wire. Materials Today Chemistry, 2022, 24, 100834.                                                                                                                                                                                       | 1.7          | 2                             |
| 515 | Computer assisted simulation and electronical properties of realistic amorphous carbon structures.<br>Synthetic Metals, 1991, 42, 2689-2692.                                                                                                                                                               | 2.1          | 1                             |
| 516 | Electronic and vibrational spectroscopy of fullerene-based materials. , 1995, , .                                                                                                                                                                                                                          |              | 1                             |
| 517 | The density of states of ta-C, ta-C:H and a-C:H as determined by X-ray excited photoelectron spectroscopy and molecular dynamics calculation. Journal of Non-Crystalline Solids, 1996, 198-200, 641-645.                                                                                                   | 1.5          | 1                             |
| 518 | Structural and Electrical Properties of Threading Dislocations in GaN. Materials Science Forum, 1997, 258-263, 1203-1210.                                                                                                                                                                                  | 0.3          | 1                             |
| 519 | Molecular Dynamics Simulation of Impurities in Nanocrystalline Diamond Grain Boundaries. Materials<br>Research Society Symposia Proceedings, 1999, 593, 483.                                                                                                                                               | 0.1          | 1                             |
| 520 | Hydrogen insertion and extraction mechanism in single-walled carbon nanotubes. AIP Conference<br>Proceedings, 2001, , .                                                                                                                                                                                    | 0.3          | 1                             |
| 521 | Do we really need configuration interaction theory to understand the negative vacancy in silicon?.<br>Physica B: Condensed Matter, 2001, 308-310, 497-501.                                                                                                                                                 | 1.3          | 1                             |
| 522 | Density Functional Based Modelling of 30° Partial Dislocations in SiC. Materials Science Forum, 2004,<br>457-460, 453-456.                                                                                                                                                                                 | 0.3          | 1                             |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 523 | Electric Fields in Electronic Structure Calculations: Electric Polarizabilities and IR and Raman<br>Spectra from First Principles. , 2005, , 293-310.                                                     |     | 1         |
| 524 | Ab Initio Calculation of Shallow Defects: Results for P-Related Donors in SiC. Materials Science Forum, 2005, 483-485, 501-506.                                                                           | 0.3 | 1         |
| 525 | Theoretical Investigations of the Diffusion of Nitrogen-Pair Defects in Silicon. Solid State Phenomena, 2005, 108-109, 407-412.                                                                           | 0.3 | 1         |
| 526 | Modeling Fundamental Aspects of the Surface Chemistry of Oxides and their Interactions with Coupling Agents. , 2006, , 17-32.                                                                             |     | 1         |
| 527 | Where Would the Electronic States of a Small Graphite-Like Carbon Island Contribute to the SiC/SiO <sub>2</sub> Interface State Density Distribution?. Materials Science Forum, 2006, 527-529, 1019-1022. | 0.3 | 1         |
| 528 | Silicon Carbide: A Playground for 1D-Modulation Electronics. Materials Science Forum, 2006, 527-529, 355-358.                                                                                             | 0.3 | 1         |
| 529 | Co-Doping of Er-Doped SiC with Oxygen – A Promising Way Towards Efficient 1540 nm Emission at<br>Room Temperature?. Materials Science Forum, 2006, 527-529, 655-658.                                      | 0.3 | 1         |
| 530 | Structural and electronic properties of Ge-Si, Sn-Si, and Pb-Si dimers on Si(001) from density-functional calculations. Physical Review B, 2009, 79, .                                                    | 1.1 | 1         |
| 531 | Atomistische Simulation von amorphen TiO <sub>2</sub> ‣trukturen für optische Schichtsysteme.<br>Vakuum in Forschung Und Praxis, 2011, 23, 6-8.                                                           | 0.0 | 1         |
| 532 | Doped Nanoparticles: Evidence for Fe2+ in Wurtzite Coordination: Iron Doping Stabilizes ZnO<br>Nanoparticles (Small 20/2011). Small, 2011, 7, 2878-2878.                                                  | 5.2 | 1         |
| 533 | Functionalization of ZnO surfaces with organic molecules. Proceedings of SPIE, 2012, , .                                                                                                                  | 0.8 | 1         |
| 534 | Light Absorption of Contacted Molecules: Insights and Impediments from Atomistic Simulations.<br>Journal of Physical Chemistry C, 2016, 120, 3699-3704.                                                   | 1.5 | 1         |
| 535 | Exploring Surface Effects in Co Doped ZnO Nanowires With Hybridâ€Density Functional Theory. Physica<br>Status Solidi (B): Basic Research, 2018, 255, 1800421.                                             | 0.7 | 1         |
| 536 | GW electronic structure calculations of cobalt defects in ZnO. Solid State Communications, 2020, 316-317, 113950.                                                                                         | 0.9 | 1         |
| 537 | New Pentaoctite Phase of Groupâ€V Nanostructures. Physica Status Solidi (B): Basic Research, 2021, 258, 2100112.                                                                                          | 0.7 | 1         |
| 538 | Hybrid SCC-DFTB/molecular mechanical studies of H-bonded systems and of N-acetyl-(L-Ala)n<br>N′-methylamide helices in water solution. , 0, .                                                             |     | 1         |
| 539 | First-Principles Study of Honeycomb Borophene on the Mo <sub>2</sub> C Substrate. Journal of<br>Physical Chemistry C, 2022, 126, 7288-7293.                                                               | 1.5 | 1         |
| 540 | Temperature-induced antiferromagnetic-ferromagnetic phase transition; s-f two-band Hubbard model.<br>Journal of Physics F: Metal Physics, 1980, 10, 637-643.                                              | 1.6 | 0         |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 541 | Magnetic structure and lattice deformation in UO2. Physics Letters, Section A: General, Atomic and Solid State Physics, 1981, 87, 69-72.                               | 0.9 | 0         |
| 542 | The influence of an electric field on the mobility in semiconductors. Physica Status Solidi (B): Basic<br>Research, 1986, 133, 755-767.                                | 0.7 | 0         |
| 543 | Gan Nanotubes. Materials Research Society Symposia Proceedings, 1998, 537, 1.                                                                                          | 0.1 | 0         |
| 544 | Theory of Electron Energy Loss Spectroscopy and its Application to Threading Edge Dislocations in GaN. Materials Research Society Symposia Proceedings, 2001, 693, 75. | 0.1 | 0         |
| 545 | On the sidewall functionalization of carbon nanotubes. AIP Conference Proceedings, 2001, , .                                                                           | 0.3 | 0         |
| 546 | Influence of the electron-phonon interactions on the transport properties at the molecular scale. ,<br>2003, 5219, 109.                                                |     | 0         |
| 547 | Electron-phonon scattering in molecular wires. , 0, , .                                                                                                                |     | 0         |
| 548 | First-Principles Calculations of α-Alumina (0001) Surfaces Energies with and without Hydrogen. , 2005, ,<br>377-387.                                                   |     | 0         |
| 549 | Superhard Materials. , 2005, , 533-543.                                                                                                                                |     | 0         |
| 550 | Calculation of Electronic States in Semiconductor Heterostructures with an Empirical spds*<br>Tight-Binding Model. , 2005, , 449-460.                                  |     | 0         |
| 551 | Structures, Energetics and Electronic Properties of Complex III-V Semiconductor Systems. , 2005, , 473-511.                                                            |     | 0         |
| 552 | Modeling Brittle and Ductile Behavior of Solids from First-Principles Calculations. , 2005, , 545-564.                                                                 |     | 0         |
| 553 | Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA. , 2005, , 335-356.                                                                           |     | 0         |
| 554 | Calculation of29Si Chemical Shifts Using a Density-Functional Based Tight-Binding Scheme. , 0, ,<br>324-328.                                                           |     | 0         |
| 555 | Choosing Models for Solids. , 2005, , 9-21.                                                                                                                            |     | 0         |
| 556 | Comparison of Simulation Methods for Organic Molecular System: Porphyrin Stacks. , 2005, , 565-575.                                                                    |     | 0         |
| 557 | LDA Calculations Using a Basis of Gaussian Orbitals. , 2005, , 131-171.                                                                                                |     | 0         |
|     |                                                                                                                                                                        |     |           |

0

| #   | Article                                                                                                                      | IF | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 559 | Quantum Mechanical Investigations on the Insertion Compounds of Early Transition Metal Oxides. , 2005, , 577-598.            |    | 0         |
| 560 | Ab initio Monte Carlo Investigations of Small Lithium Clusters. , 2005, , 311-322.                                           |    | 0         |
| 561 | Structure and Isomerization in Alkali Halide Clusters. , 2005, , 323-334.                                                    |    | 0         |
| 562 | Ab initio Molecular Dynamics Simulations of Reactions at Surfaces. , 2005, , 389-404.                                        |    | 0         |
| 563 | Linear-Response Studies of the Electron-Phonon Interaction in Metals. , 2005, , 419-428.                                     |    | 0         |
| 564 | Modelling Carbon for Industry: Radiolytic Oxidation. , 2005, , 429-447.                                                      |    | 0         |
| 565 | Constant-Pressure Molecular Dynamics of Amorphous Si. , 2005, , 461-471.                                                     |    | 0         |
| 566 | Structure and Dynamics of Point Defects in Crystalline Silicon. , 2005, , 513-532.                                           |    | 0         |
| 567 | From Band Structures to Linear and Nonlinear Optical Spectra in Semiconductors. , 2005, , 599-640.                           |    | 0         |
| 568 | Si Nanoparticles as a Model for Porous Si. , 2005, , 641-663.                                                                |    | 0         |
| 569 | Paramagnetic Defects. , 2005, , 665-684.                                                                                     |    | 0         |
| 570 | Large-Scale Applications of Real-Space Multigrid Methods to Surfaces, Nanotubes and Quantum<br>Transport. , 2005, , 685-701. |    | 0         |
| 571 | Semiconductor Nanostructures. , 2005, , 703-722.                                                                             |    | 0         |
| 572 | Electronic Structure Methods for Predicting the Properties of Materials: Grids in Space. , 2005, ,<br>173-195.               |    | 0         |
| 573 | Strategies for Massively Parallel Local-Orbital-Based Electronic Structure Methods. , 2005, , 197-218.                       |    | 0         |
| 574 | The Accuracy of the Pseudopotential Approximation within Density-Functional Theory. , 2005, , 219-230.                       |    | 0         |
| 575 | Metal Surfaces: Surface, Step and Kink Formation Energies. , 2005, , 405-418.                                                |    | 0         |
|     |                                                                                                                              |    |           |

An Introduction to the Third-Generation LMTO Method. , 2005, , 89-130.

| #   | ARTICLE                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 577 | Large-Scale Electronic Structure Calculations Using Linear Scaling Methods. , 2005, , 231-249.                                                                                                         |     | 0         |
| 578 | Incoherent tunneling and heat dissipation in molecular bridges. Journal of Physics: Conference Series, 2006, 35, 349-356.                                                                              | 0.3 | 0         |
| 579 | The Inefficiency of H <sub>2</sub> -Passivation as a Criterion for the Origin of<br>SiC/SiO <sub>2</sub> Deep Interface States - a Theoretical Study. Materials Science Forum, 0,<br>600-603, 723-726. | 0.3 | Ο         |
| 580 | Kinetic Monte Carlo Simulation of the Adsorption Competition of Epoxide Components on the<br>Aluminium Oxide Surface. Soft Materials, 2012, 10, 235-256.                                               | 0.8 | 0         |
| 581 | Theoretical investigations of the electronic properties of functionalized zinc-oxide nanowires.<br>Proceedings of SPIE, 2014, , .                                                                      | 0.8 | Ο         |
| 582 | TiO2 Nanowires as a Wide Bandgap Dirac Material: a numerical study of impurity scattering and<br>Anderson disorder. Materials Research Society Symposia Proceedings, 2014, 1659, 187-191.              | 0.1 | 0         |
| 583 | Influence of porosity and methyl doping inside silica network: An electron diffraction and DFTB analysis. Microporous and Mesoporous Materials, 2014, 200, 145-150.                                    | 2.2 | 0         |
| 584 | Atomic level simulation of permittivity of oxidized ultra-thin Si channels. , 2015, , .                                                                                                                |     | 0         |
| 585 | Atomic level simulation of permittivity of oxidized ultra-thin si channels. , 2015, , .                                                                                                                |     | 0         |
| 586 | Ultrafast Dynamics through a Conical Intersection in an Organic Photovoltaic Thin Film Probed by two-Dimensional Electronic Spectroscopy. , 2019, , .                                                  |     | 0         |
| 587 | Core structure of dislocations in GaN revealed by transmission electron microscopy. , 2018, , 323-326.                                                                                                 |     | 0         |
| 588 | Crystal structure and temperature-dependent properties of Na2H4Ga2GeO8– a novel gallogermanate.<br>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 805-813.         | 0.3 | 0         |
| 589 | Chemical Functionalization of ultrathin tin layers. Physica Status Solidi (B): Basic Research, O, ,<br>2100499.                                                                                        | 0.7 | 0         |