
Roland S G Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3866882/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pilocarpine model of temporal lobe epilepsy. Journal of Neuroscience Methods, 2008, 172, 143-157.	2.5	834
2	Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neuroscience Letters, 1986, 69, 156-161.	2.1	334
3	Epileptiform activity induced by lowering extracellular [Mg2+] in combined hippocampal-entorhinal cortex slices: Modulation by receptors for norepinephrine and N-methyl-d-aspartate. Epilepsy Research, 1987, 1, 53-62.	1.6	247
4	Entorhinal-hippocampal connections: a speculative view of their function. Trends in Neurosciences, 1993, 16, 58-64.	8.6	243
5	Tonic facilitation of glutamate release by presynaptic N-methyl-d-aspartate autoreceptors in the entorhinal cortex. Neuroscience, 1996, 75, 339-344.	2.3	241
6	Neuronal metabolism governs cortical network response state. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5597-5601.	7.1	165
7	Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation. Neuroscience Letters, 1993, 149, 35-39.	2.1	163
8	The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology, 2000, 39, 2139-2146.	4.1	154
9	Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience, 2000, 99, 413-422.	2.3	139
10	Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal synapses in vitro. European Journal of Neuroscience, 2004, 20, 1566-1576.	2.6	129
11	NR2B-Containing NMDA Autoreceptors at Synapses on Entorhinal Cortical Neurons. Journal of Neurophysiology, 2001, 86, 1644-1651.	1.8	124
12	Synchronous discharges in the rat entorhinal cortex in vitro: Site of initiation and the role of excitatory amino acid receptors. Neuroscience, 1990, 34, 657-670.	2.3	105
13	Tonic Facilitation of Glutamate Release by Presynaptic NR2B-Containing NMDA Receptors Is Increased in the Entorhinal Cortex of Chronically Epileptic Rats. Journal of Neuroscience, 2006, 26, 406-410.	3.6	98
14	Synaptic and intrinsic properties of neurons of origin of the perforant path in layer II of the rat entorhinal cortex in vitro. Hippocampus, 1994, 4, 335-353.	1.9	91
15	Interactions between p-tyramine, m-tyramine, or β-phenylethylamine and dopamine on single neurones in the cortex and caudate nucleus of the rat. Canadian Journal of Physiology and Pharmacology, 1980, 58, 222-227.	1.4	89
16	A reevaluation of excitatory amino acid-mediated synaptic transmission in rat dentate gyrus. Journal of Neurophysiology, 1990, 64, 119-132.	1.8	84
17	The locus coeruleus: actions of psychoactive drugs. Experientia, 1983, 39, 242-249.	1.2	80
18	Responses of cortical neurones to stimulation of the nucleus raphé medianus: A pharmacological analysis of the role of indoleamines. Neuropharmacology, 1982, 21, 511-520.	4.1	78

#	Article	IF	CITATIONS
19	Interactions of Dopamine with Glutamate- and GABA-mediated Synaptic Transmission in the Rat Entorhinal CortexIn Vitro. European Journal of Neuroscience, 1993, 5, 760-767.	2.6	74
20	Tryptamine and 5-hydroxytryptamine: Actions and interactions on cortical neurones in the rat. Life Sciences, 1980, 27, 1849-1856.	4.3	68
21	Epileptiform events induced by GABA-antagonists in entorhinal cortical cells in vitro are partly mediated byN-methyl-d-aspartate receptors. Brain Research, 1988, 457, 113-121.	2.2	63
22	Abolition of the orthodromically evoked IPSP of CA1 pyramidal cells before the EPSP during washout of calcium from hippocampal slices. Experimental Brain Research, 1987, 65, 676-80.	1.5	52
23	Activation of receptors contributes to the EPSP at perforant path synapses in the rat dentate gyrus in vitro. Neuroscience Letters, 1989, 97, 323-328.	2.1	51
24	A comparison of spontaneous EPSCs in layer II and layer IV-V neurons of the rat entorhinal cortex in vitro. Journal of Neurophysiology, 1996, 76, 1089-1100.	1.8	51
25	Complex synaptic responses of entorhinal cortical cells in the rat to subicular stimulation in vitro: demonstration of an NMDA receptor-mediated component. Neuroscience Letters, 1987, 81, 209-214.	2.1	50
26	Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. Journal of Neuroscience Methods, 2016, 260, 221-232.	2.5	50
27	A comparison of the responses of cortical neurones to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat. Neuropharmacology, 1982, 21, 209-214.	4.1	46
28	Valproate modifies spontaneous excitation and inhibition at cortical synapses in vitro. Neuropharmacology, 2003, 45, 907-917.	4.1	46
29	Electrophysiological characterisation of tachykinin receptors in the rat nucleus of the solitary tract and dorsal motor nucleus of the vagus in vitro. British Journal of Pharmacology, 1997, 122, 1151-1159.	5.4	41
30	Neurokinin-1 receptors in the rat nucleus tractus solitarius: pre- and postsynaptic modulation of glutamate and GABA release. Neuroscience, 2004, 127, 467-479.	2.3	41
31	In vivo PHARMACOLOGICAL STUDIES ON THE INTERACTIONS BETWEEN TRYPTAMINE AND 5â€HYDROXYTRYPTAMINE. British Journal of Pharmacology, 1981, 73, 485-493.	5.4	40
32	Excitatory effects of ACTH on noradrenergic neurons of the locus coeruleus in the rat. Brain Research, 1982, 251, 177-179.	2.2	40
33	Neurokinin-receptor-mediated depolarization of cortical neurons elicits an increase in glutamate release at excitatory synapses. European Journal of Neuroscience, 2002, 16, 1896-1906.	2.6	40
34	Activation of Presynaptic Group III Metabotropic Receptors Enhances Glutamate Release in Rat Entorhinal Cortex. Journal of Neurophysiology, 2000, 83, 2519-2525.	1.8	39
35	Enhancement of 5-Hydroxytryptamine-induced behavioral effects following chronic administration of antidepressant drugs. Psychopharmacology, 1980, 69, 307-311.	3.1	38
36	Differential Actions of PKA and PKC in the Regulation of Glutamate Release by Group III mGluRs in the Entorhinal Cortex. Journal of Neurophysiology, 2001, 85, 571-579.	1.8	38

#	Article	IF	CITATIONS
37	Altered sensitivity of forebrain neurones to iontophoretically applied noradrenaline in aging rats. Neurobiology of Aging, 1983, 4, 97-99.	3.1	37
38	The Effect of Mesencephalic Lesions on Tyramine and Dopamine in the Caudate Nucleus of the Rat. Journal of Neurochemistry, 1981, 36, 1898-1903.	3.9	36
39	Multiple changes in the sensitivity of cingulate cortical neurones to putative neurotransmitters in ageing rats: Substance P, acetylcholine and noradrenaline. Neuroscience Letters, 1984, 50, 31-36.	2.1	35
40	Reduced activity of locus coeruleus neurons in hypertensive rats. Neuroscience Letters, 1985, 61, 25-29.	2.1	35
41	The direct perforant path input to CA1: Excitatory or inhibitory?. Hippocampus, 1995, 5, 101-103.	1.9	33
42	Activation of neurokinin-1 receptors promotes GABA release at synapses in the rat entorhinal cortex. Neuroscience, 2002, 115, 575-586.	2.3	33
43	Monoaminergic modulation of the sensitivity of neurones in the cingulate cortex to iontophoretically applied substance P. Brain Research, 1984, 311, 297-305.	2.2	31
44	Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus, 2005, 15, 232-245.	1.9	31
45	Depression of Glutamate and GABA Release by Presynaptic GABA _B Receptors in the Entorhinal Cortex in Normal and Chronically Epileptic Rats. NeuroSignals, 2006, 15, 202-215.	0.9	31
46	SYMPOSIUM REPORT. Background synaptic activity in rat entorhinal cortical neurones: differential control of transmitter release by presynaptic receptors. Journal of Physiology, 2005, 562, 107-120.	2.9	28
47	Activation of the noradrenergic projection from locus coeruleus reduces the excitatory responses of anterior cingulate cortical neurones to substance P. Neuroscience, 1984, 13, 819-825.	2.3	27
48	Tachykinins may modify spontaneous epileptiform activity in the rat entorhinal cortex in vitro by activating GABAergic inhibition. Neuroscience, 1998, 83, 1047-1062.	2.3	27
49	A structure-activity profile of substance P and some of its fragments on supraspinal neurones in the rat. Neuroscience Letters, 1982, 33, 67-71.	2.1	26
50	Trace biogenic amines: a possible functional role in the CNS. Trends in Pharmacological Sciences, 1983, 4, 426-429.	8.7	25
51	An increase in sensitivity of rat cingulate cortical neurones to substance P occurs following withdrawal of chronic administration of antidepressant drugs. British Journal of Pharmacology, 1984, 81, 659-664.	5.4	25
52	Does pipecolic acid interact with the central GABA-ergic system?. Journal of Neural Transmission, 1986, 67, 175-189.	2.8	25
53	The specific protective effect of diazepam and valproate against isoniazid-induced seizures is not correlated with increased GABA levels. Journal of Neural Transmission, 1985, 63, 169-189.	2.8	24
54	Spontaneous activity mediated by NMDA receptors in immature rat entorhinal cortex in vitro. Neuroscience Letters, 1989, 104, 93-98.	2.1	24

#	Article	IF	CITATIONS
55	Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex in vitro. Neuroscience, 2010, 167, 456-474.	2.3	24
56	Cortical oscillatory dynamics and benzodiazepine-site modulation of tonic inhibition in fast spiking interneurons. Neuropharmacology, 2015, 95, 192-205.	4.1	24
57	Frequency-dependent alterations in synaptic transmission in entorhinal-hippocampal pathways. Hippocampus, 1995, 5, 125-128.	1.9	23
58	A Low Mortality, High Morbidity Reduced Intensity Status Epilepticus (RISE) Model of Epilepsy and Epileptogenesis in the Rat. PLoS ONE, 2016, 11, e0147265.	2.5	23
59	Specific enhancement of neuronal responses to catecholamine by p-tyramine. Journal of Neuroscience Research, 1981, 6, 49-61.	2.9	21
60	Changes in Levels of Dopamine and Tyramine in the Rat Caudate Nucleus Following Alterations of Impulse Flow in the Nigrostriatal Pathway. Journal of Neurochemistry, 1983, 40, 396-401.	3.9	21
61	The sensitivity of hippocampal pyramidal neurons to serotoninin vitro: Effect of prolonged treatment with clorgyline or clomipramine. Journal of Neural Transmission, 1984, 60, 265-271.	2.8	21
62	Dopamine agonist-induced restoration of drinking in response to hypertonie saline in adipsic dopamine denervated rats. Brain Research Bulletin, 1982, 8, 375-379.	3.0	19
63	Tryptamine modifies cortical neurone responses evoked by stimulation of nucleus raphe medianus. Brain Research Bulletin, 1982, 8, 435-437.	3.0	19
64	Further studies on the role of indoleamines in the responses of cortical neurones to stimulation of nucleus raphe medianus: Effects of indoleamine precursor loading. Neuropharmacology, 1982, 21, 1273-1277.	4.1	19
65	Glutamate-induced activation of rat locus coeruleus increases CA1 pyramidal cell excitability. Neuroscience Letters, 1986, 65, 11-16.	2.1	19
66	Lamina-specific differences in GABAB autoreceptor-mediated regulation of spontaneous GABA release in rat entorhinal cortex. Neuropharmacology, 2004, 46, 31-42.	4.1	18
67	Felbamate but not phenytoin or gabapentin reduces glutamate release by blocking presynaptic NMDA receptors in the entorhinal cortex. Epilepsy Research, 2007, 77, 157-164.	1.6	18
68	Mobility of NMDA autoreceptors but not postsynaptic receptors at glutamate synapses in the rat entorhinal cortex. Journal of Physiology, 2008, 586, 4905-4924.	2.9	18
69	Activation of presynaptic group III metabotropic glutamate receptors depresses spontaneous inhibition in layer V of the rat entorhinal cortex. Neuroscience, 2001, 105, 71-78.	2.3	17
70	POTENTIATION OF RESPONSES TO MONOAMINES BY ANTIDEPRESSANTS AFTER DESTRUCTION OF MONOAMINE AFFERENTS. British Journal of Pharmacology, 1979, 65, 501-510.	5.4	16
71	Verapamil blocks the afterhyperpolarization but not the spike frequency accommodation of rat CA1 pyramidal cells in vitro. Brain Research, 1988, 462, 367-371.	2.2	16
72	Long-term administration of atropine, imipramine, and viloxazine alters responsiveness of rat cortical neurones to acetylcholine. Canadian Journal of Physiology and Pharmacology, 1980, 58, 531-535.	1.4	15

#	Article	IF	CITATIONS
73	The Role of NMDA Receptor Subtypes in Short-Term Plasticity in the Rat Entorhinal Cortex. Neural Plasticity, 2008, 2008, 1-13.	2.2	15
74	Differential control of two forms of glutamate release by group III metabotropic glutamate receptors at rat entorhinal synapses. Neuroscience, 2007, 148, 7-21.	2.3	14
75	Pre―and postâ€synaptic functions of kainate receptors at glutamate and GABA synapses in the rat entorhinal cortex. Hippocampus, 2012, 22, 555-576.	1.9	14
76	Simultaneous estimation of global background synaptic inhibition and excitation from membrane potential fluctuations in layer III neurons of the rat entorhinal cortex in vitro. Neuroscience, 2007, 147, 884-892.	2.3	11
77	Ethosuximide modifies network excitability in the rat entorhinal cortex via an increase in GABA release. Neuropharmacology, 2012, 62, 807-814.	4.1	11
78	Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site. PLoS ONE, 2015, 10, e0133548.	2.5	10
79	On the role of the baseline firing rate in determining the responsiveness of cingulate cortical neurons to iontophoretically applied substance P and acetylcholine. Journal of Pharmacy and Pharmacology, 2011, 36, 623-625.	2.4	9
80	Astroglial d-serine is the endogenous co-agonist at the presynaptic NMDA receptor in rat entorhinal cortex. Neuropharmacology, 2014, 83, 118-127.	4.1	8
81	Neuronal Plasticity in the Entorhinal Cortex. Neural Plasticity, 2008, 2008, 1-2.	2.2	5
82	The AMPA receptor antagonist perampanel suppresses epileptic activity in human focal cortical dysplasia. Epilepsia Open, 2021, , .	2.4	4
83	Trace Amine-Peptide Interactions.II. Phenylethylamine and Enkephalin, P-Tyramine and Enkephalin. , 1984, , 327-331.		1

Embracing change. , 2016, , 7-7.

0