Tim M Conway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3865573/publications.pdf

Version: 2024-02-01

		236925	345221
35	2,493	25	36
papers	citations	h-index	g-index
39	39	39	2383
all docs	docs citations	times ranked	citing authors
			o o

#	Article	IF	Citations
1	Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 2014, 511, 212-215.	27.8	287
2	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
3	A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 2014, 394, 159-167.	4.4	160
4	A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Analytica Chimica Acta, 2013, 793, 44-52.	5 . 4	154
5	The cycling of iron, zinc and cadmium in the North East Pacific Ocean – Insights from stable isotopes. Geochimica Et Cosmochimica Acta, 2015, 164, 262-283.	3.9	136
6	The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochemical Cycles, 2014, 28, 1111-1128.	4.9	133
7	Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6888-6893.	7.1	115
8	Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean. Geochimica Et Cosmochimica Acta, 2015, 148, 269-283.	3.9	106
9	Distinct iron isotopic signatures and supply from marine sediment dissolution. Nature Communications, 2013, 4, 2143.	12.8	97
10	Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 130-151.	1.4	95
11	Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry, 2017, 32, 415-419.	3.0	86
12	Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nature Communications, 2019, 10, 2628.	12.8	71
13	Quantifying trace element and isotope fluxes at the ocean–sediment boundary: a review. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160246.	3.4	69
14	Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Marine Chemistry, 2015, 177, 476-489.	2.3	58
15	Physical and biogeochemical controls on the distribution of dissolved cadmium and its isotopes in the Southwest Pacific Ocean. Chemical Geology, 2019, 511, 494-509.	3.3	49
16	Iron colloids dominate sedimentary supply to the ocean interior. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
17	Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nature Communications, 2015, 6, 7850.	12.8	43
18	Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACESâ€Era Data. Global Biogeochemical Cycles, 2021, 35, e2020GB006814.	4.9	42

#	Article	IF	Citations
19	Dissolved iron and iron isotopes in the southeastern Pacific Ocean. Global Biogeochemical Cycles, 2016, 30, 1372-1395.	4.9	41
20	Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: Insights from the Antarctic Circumnavigation Expedition. Geochimica Et Cosmochimica Acta, 2020, 268, 310-324.	3.9	35
21	Replacement Times of a Spectrum of Elements in the North Atlantic Based on Thorium Supply. Global Biogeochemical Cycles, 2018, 32, 1294-1311.	4.9	32
22	The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean. Biogeosciences, 2017, 14, 4637-4662.	3.3	30
23	The isotopic signature and distribution of particulate iron in the North Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 321-331.	1.4	28
24	Gulf Stream rings as a source of iron to the North Atlantic subtropical gyre. Nature Geoscience, 2018, 11, 594-598.	12.9	28
25	Trace metal and nutrient dynamics across broad biogeochemical gradients in the Indian and Pacific sectors of the Southern Ocean. Marine Chemistry, 2020, 221, 103773.	2.3	28
26	Intercomparison of dissolved iron isotope profiles from reoccupation of three GEOTRACES stations in the Atlantic Ocean. Marine Chemistry, 2016, 183, 50-61.	2.3	25
27	Isotopic fingerprinting of biogeochemical processes and iron sources in the iron-limited surface Southern Ocean. Earth and Planetary Science Letters, 2021, 567, 116967.	4.4	22
28	High-resolution Cd isotope systematics in multiple zones of the Southern Ocean from the Antarctic Circumnavigation Expedition. Earth and Planetary Science Letters, 2019, 527, 115799.	4.4	21
29	The 79°N Glacier cavity modulates subglacial iron export to the NE Greenland Shelf. Nature Communications, 2021, 12, 3030.	12.8	17
30	A decade of progress in understanding cycles of trace elements and their isotopes in the oceans. Chemical Geology, 2021, 580, 120381.	3.3	13
31	Microbial Fe(III) reduction as a potential iron source from Holocene sediments beneath Larsen Ice Shelf. Nature Communications, 2019, 10, 5786.	12.8	11
32	Re-assessing the influence of particle-hosted sulphide precipitation on the marine cadmium cycle. Geochimica Et Cosmochimica Acta, 2022, 322, 274-296.	3.9	11
33	Lack of redox cycling for nickel in the water column of the Eastern tropical north pacific oxygen deficient zone: Insight from dissolved and particulate nickel isotopes. Geochimica Et Cosmochimica Acta, 2021, 309, 235-250.	3.9	8
34	Description and ecology of a new Middle Ordovician (Llanvirn) odontopleurid trilobite from the Builth Inlier of Mid-Wales, with a review of the genus <i>Meadowtownella</i> . Geological Magazine, 2012, 149, 397-411.	1.5	7
35	The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum. PLoS ONE, 2016, 11, e0158553.	2.5	6