Phillip J Van Mantgem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3865093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Widespread Increase of Tree Mortality Rates in the Western United States. Science, 2009, 323, 521-524.	12.6	1,465
2	Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecology Letters, 2007, 10, 909-916.	6.4	286
3	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	7.3	286
4	Climatic stress increases forest fire severity across the western <scp>U</scp> nited <scp>S</scp> tates. Ecology Letters, 2013, 16, 1151-1156.	6.4	201
5	Forest turnover rates follow global and regional patterns of productivity. Ecology Letters, 2005, 8, 524-531.	6.4	158
6	Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters, 2018, 13, 113004.	5.2	145
7	The contribution of competition to tree mortality in old-growth coniferous forests. Forest Ecology and Management, 2011, 261, 1203-1213.	3.2	126
8	SPATIAL ELEMENTS OF MORTALITY RISK IN OLD-GROWTH FORESTS. Ecology, 2008, 89, 1744-1756.	3.2	105
9	Causes and implications of the correlation between forest productivity and tree mortality rates. Ecological Monographs, 2011, 81, 527-555.	5.4	105
10	Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, 2003, 178, 341-352.	3.2	95
11	The relationship between tree growth patterns and likelihood of mortality: a study of two tree species in the Sierra Nevada. Canadian Journal of Forest Research, 2007, 37, 580-597.	1.7	87
12	Growth rate predicts mortality of Abies concolor in both burned and unburned stands. Canadian Journal of Forest Research, 2003, 33, 1029-1038.	1.7	71
13	Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests. PLoS ONE, 2013, 8, e69917.	2.5	71
14	Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California. Forest Ecology and Management, 2011, 261, 989-994.	3.2	68
15	EFFECTS OF AN INTRODUCED PATHOGEN AND FIRE EXCLUSION ON THE DEMOGRAPHY OF SUGAR PINE. , 2004, 14, 1590-1602.		65
16	Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western U.S. Forests. Forest Ecology and Management, 2017, 405, 188-199.	3.2	65
17	Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. Forest Ecology and Management, 2018, 422, 190-198.	3.2	63
18	Does Prescribed Fire Promote Resistance to Drought in Low Elevation Forests of the Sierra Nevada, California, USA?. Fire Ecology, 2016, 12, 13-25.	3.0	61

PHILLIP J VAN MANTGEM

#	Article	IF	CITATIONS
19	Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere, 2015, 6, 1-10.	2.2	54
20	Preâ€fire drought and competition mediate postâ€fire conifer mortality in western U.S. National Parks. Ecological Applications, 2018, 28, 1730-1739.	3.8	52
21	Forest reproduction along a climatic gradient in the Sierra Nevada, California. Forest Ecology and Management, 2006, 225, 391-399.	3.2	51
22	The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California. Journal of Ecology, 2005, 93, 737-747.	4.0	39
23	Negligible Influence of Spatial Autocorrelation in the Assessment of Fire Effects in a Mixed Conifer Forest. Fire Ecology, 2009, 5, 116-125.	3.0	37
24	Effects of postfire climate and seed availability on postfire conifer regeneration. Ecological Applications, 2021, 31, e02280.	3.8	33
25	Does coring contribute to tree mortality?. Canadian Journal of Forest Research, 2004, 34, 2394-2398.	1.7	30
26	An experimental demonstration of stem damage as a predictor of fire-caused mortality for ponderosa pine. Canadian Journal of Forest Research, 2004, 34, 1343-1347.	1.7	30
27	The Effects of Raking on Sugar Pine Mortality following Prescribed Fire in Sequoia and Kings Canyon National Parks, California, USA. Fire Ecology, 2010, 6, 97-116.	3.0	26
28	The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park. Canadian Journal of Forest Research, 2015, 45, 910-919.	1.7	25
29	A large database supports the use of simple models of post-fire tree mortality for thick-barked conifers, with less support for other species. Fire Ecology, 2020, 16, .	3.0	23
30	Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States. Forest Ecology and Management, 2013, 289, 463-469.	3.2	21
31	Crowding, climate, and the case for social distancing among trees. Ecological Applications, 2022, 32, e2507.	3.8	20
32	Population Persistence in Florida Torreya: Comparing Modeled Projections of a Declining Coniferous Tree. Conservation Biology, 2000, 14, 1023-1033.	4.7	18
33	Duration of fuels reduction following prescribed fire in coniferous forests of U.S. national parks in California and the Colorado Plateau. Forest Ecology and Management, 2016, 379, 265-272.	3.2	15
34	Effects of Regenerant Wastewater Irrigation on Growth and Ion Uptake of Landscape Plants. Journal of Environmental Horticulture, 1995, 13, 92-96.	0.5	15
35	Bioextraction of Selenium by Forage and Selected Field Legume Species in Selenium-Laden Soils under Minimal Field Management Conditions. Ecotoxicology and Environmental Safety, 1996, 34, 228-238. –	6.0	14
36	Regenerant wastewater irrigation and ion uptake in five turfgrass species. Journal of Plant Nutrition, 1996, 19, 1511-1530.	1.9	13

Phillip J Van Mantgem

#	Article	IF	CITATIONS
37	Higher sensitivity and lower specificity in post-fire mortality model validation of 11 western US tree species. International Journal of Wildland Fire, 2017, 26, 444.	2.4	13
38	The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Scientific Data, 2020, 7, 194.	5.3	13
39	The relative contributions of disease and insects in the decline of a long-lived tree: a stochastic demographic model of whitebark pine (Pinus albicaulis). Forest Ecology and Management, 2016, 381, 144-156.	3.2	11
40	The influence of pre-fire growth patterns on post-fire tree mortality for common conifers in western US parks. International Journal of Wildland Fire, 2020, 29, 513.	2.4	11
41	An individual-based growth and competition model for coastal redwood forest restoration. Canadian Journal of Forest Research, 2014, 44, 1051-1057.	1.7	8
42	Seed production patterns of surviving Sierra Nevada conifers show minimal change following drought. Forest Ecology and Management, 2021, 480, 118598.	3.2	5
43	Forest Resistance to Extended Drought Enhanced by Prescribed Fire in Low Elevation Forests of the Sierra Nevada. Forests, 2021, 12, 1248.	2.1	5
44	Patterns of conifer invasion following prescribed fire in grasslands and oak woodlands of Redwood National Park, California. Restoration Ecology, 2021, 29, e13366.	2.9	3
45	Long-term effects of prescribed fire on large tree growth in mixed conifer forests at Lassen Volcanic National Park, California. Forest Ecology and Management, 2022, 517, 120260.	3.2	2
46	Structure, Diversity, and Biophysical Properties of Old-Growth Forests in the Klamath Region, USA. Northwest Science, 2015, 89, 170-181.	0.2	1
47	Response of Western Mountain Ecosystems to Climatic Variability and Change:. , 2011, , 163-190.		1
48	A Decomposed Granite County Almanac James K. Agee . Steward's Fork: A Sustainable Future for the Klamath Mountains. University of California Press. Berkeley. 2007. 294 pages. \$39.95, hardcover Northwest Science, 2008, 82, 158-159.	0.2	0
49	EFFECTS OF REGENERANT WASTEWATER IRRIGATION ON GROWTH AND ION UPTAKE OF LANDSCAPE PLANTS. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 325a-325.	1.0	0