Colin O'Dowd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flood or Drought: How Do Aerosols Affect Precipitation?. Science, 2008, 321, 1309-1313.	12.6	1,682
2	Biogenically driven organic contribution to marine aerosol. Nature, 2004, 431, 676-680.	27.8	890
3	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	4.1	714
4	Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417, 632-636.	27.8	705
5	The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 2006, 6, 2593-2649.	4.9	690
6	Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5, 657-685.	3.1	689
7	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	4.1	609
8	Marine aerosol, sea-salt, and the marine sulphur cycle: a short review. Atmospheric Environment, 1997, 31, 73-80.	4.1	596
9	Marine aerosol production: a review of the current knowledge. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1753-1774.	3.4	575
10	Production flux of sea spray aerosol. Reviews of Geophysics, 2011, 49, .	23.0	458
11	Atmospheric particles from organic vapours. Nature, 2002, 416, 497-498.	27.8	395
12	Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophysical Research Letters, 2008, 35, .	4.0	380
13	An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics, 2010, 10, 10561-10605.	4.9	352
14	Important Source of Marine Secondary Organic Aerosol from Biogenic Amines. Environmental Science & Technology, 2008, 42, 9116-9121.	10.0	349
15	Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture, 2000, 185, 235-243.	3.5	327
16	Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. Journal of Geophysical Research, 2004, 109, .	3.3	322
17	Physicochemical properties of aerosols over the northeast Atlantic: Evidence for windâ€speedâ€related submicron seaâ€salt aerosol production. Journal of Geophysical Research, 1993, 98, 1137-1149.	3.3	309
18	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	4.9	308

#	Article	IF	CITATIONS
19	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
20	A modeling study of iodine chemistry in the marine boundary layer. Journal of Geophysical Research, 2000, 105, 14371-14385.	3.3	252
21	EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.	4.9	248
22	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	27.8	237
23	Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature, 2017, 546, 637-641.	27.8	232
24	On the formation, growth and composition of nucleation mode particles. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 479-490.	1.6	221
25	Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe. Boundary-Layer Meteorology, 2012, 143, 49-75.	2.3	219
26	Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmospheric Chemistry and Physics, 2011, 11, 5505-5538.	4.9	214
27	Physical characterization of aerosol particles during nucleation events. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 344-358.	1.6	212
28	Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4775-4793.	4.9	212
29	Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. Journal of Geophysical Research, 2002, 107, PAR 2-1.	3.3	205
30	The role of VOC oxidation products in continental new particle formation. Atmospheric Chemistry and Physics, 2008, 8, 2657-2665.	4.9	202
31	New particle formation from photooxidation of diiodomethane (CH2I2). Journal of Geophysical Research, 2003, 108, .	3.3	200
32	On the photochemical production of new particles in the coastal boundary layer. Geophysical Research Letters, 1999, 26, 1707-1710.	4.0	197
33	Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2009, 9, 2825-2841.	4.9	196
34	Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment. Atmospheric Environment, 2010, 44, 670-677.	4.1	196
35	Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. Journal of Geophysical Research, 2007, 112, .	3.3	189
36	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, 7735-7744.	4.0	182

#	Article	IF	CITATIONS
37	lodine oxide homogeneous nucleation: An explanation for coastal new particle production. Geophysical Research Letters, 2001, 28, 1949-1952.	4.0	177
38	Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	175
39	Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies. Advances in Meteorology, 2010, 2010, 1-10.	1.6	175
40	A combined organicâ€inorganic seaâ€spray source function. Geophysical Research Letters, 2008, 35, .	4.0	173
41	New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment. Geophysical Research Letters, 1998, 25, 1661-1664.	4.0	168
42	Emissions from Ships with respect to Their Effects on Clouds. Journals of the Atmospheric Sciences, 2000, 57, 2570-2590.	1.7	166
43	A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements. Journal of Geophysical Research, 2002, 107, PAR 1-1.	3.3	165
44	Coastal New Particle Formation: A Review of the Current State-Of-The-Art. Environmental Chemistry, 2005, 2, 245.	1.5	161
45	Surfactants and submicron sea spray generation. Journal of Geophysical Research, 2006, 111, .	3.3	155
46	Severe Pollution in China Amplified by Atmospheric Moisture. Scientific Reports, 2017, 7, 15760.	3.3	151
47	Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8777-8790.	4.9	150
48	Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties. Environmental Science & Technology, 2018, 52, 6825-6833.	10.0	149
49	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	4.9	148
50	Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations. Atmospheric Chemistry and Physics, 2017, 17, 3637-3658.	4.9	144
51	Physical characterization of aerosol particles during nucleation events. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 344-358.	1.6	142
52	Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland. Journal of Geophysical Research, 2002, 107, PAR 5-1.	3.3	137
53	Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers. Journal of Atmospheric and Oceanic Technology, 2010, 27, 305-318.	1.3	137
54	Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmospheric Chemistry and Physics, 2006, 6, 1657-1732.	4.9	135

#	Article	IF	CITATIONS
55	Physical characterization of aerosol particles during nucleation events. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 344.	1.6	131
56	Aerosol decadal trends $\hat{a} \in$ Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmospheric Chemistry and Physics, 2013, 13, 869-894.	4.9	126
57	Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing. Environmental Science & Technology, 2018, 52, 10967-10974.	10.0	125
58	Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts. Journal of Geophysical Research, 2002, 107, PAR 12-1.	3.3	121
59	The relative importance of nonâ€seaâ€salt sulphate and seaâ€salt aerosol to the marine cloud condensation nuclei population: An improved multiâ€component aerosolâ€cloud droplet parametrization. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 1295-1313.	2.7	118
60	Primary marine organic aerosol: A dichotomy of low hygroscopicity and high CCN activity. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	118
61	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	3.1	118
62	Quantification of the carbonaceous matter origin in submicron marine aerosol by ¹³ C and ¹⁴ C isotope analysis. Atmospheric Chemistry and Physics, 2011, 11, 8593-8606.	4.9	114
63	Detecting high contributions of primary organic matter to marine aerosol: A case study. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	113
64	A sea spray aerosol flux parameterization encapsulating wave state. Atmospheric Chemistry and Physics, 2014, 14, 1837-1852.	4.9	113
65	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	4.9	113
66	Relationship of oceanic whitecap coverage to wind speed and wind history. Geophysical Research Letters, 2008, 35, .	4.0	111
67	Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign. Atmospheric Chemistry and Physics, 2011, 11, 10331-10347.	4.9	111
68	Coupling sea-salt and sulphate interactions and its impact on cloud droplet concentration predictions. Geophysical Research Letters, 1999, 26, 1311-1314.	4.0	110
69	Primary versus secondary contributions to particle number concentrations in the European boundary layer. Atmospheric Chemistry and Physics, 2011, 11, 12007-12036.	4.9	110
70	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	4.9	108
71	Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica. Journal of Geophysical Research, 1997, 102, 12839-12854.	3.3	107
72	On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. Journal of Geophysical Research, 2012, 117, .	3.3	107

#	Article	IF	CITATIONS
73	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	3.1	104
74	Arctic sea ice melt leads to atmospheric new particle formation. Scientific Reports, 2017, 7, 3318.	3.3	101
75	Can new particle formation occur in the clean marine boundary layer?. Journal of Geophysical Research, 2000, 105, 26531-26546.	3.3	100
76	Marine and Terrestrial Organic Iceâ€Nucleating Particles in Pristine Marine to Continentally Influenced Northeast Atlantic Air Masses. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6196-6212.	3.3	98
77	Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes. Geophysical Research Letters, 2008, 35, .	4.0	93
78	Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophysical Research Letters, 2008, 35, .	4.0	93
79	Global Modeling of the Oceanic Source of Organic Aerosols. Advances in Meteorology, 2010, 2010, 1-16.	1.6	93
80	Submicron sea spray fluxes. Geophysical Research Letters, 2005, 32, .	4.0	92
81	Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. Journal of Geophysical Research, 2002, 107, PAR 14-1.	3.3	91
82	Is chlorophyllâ€ <i>a</i> the best surrogate for organic matter enrichment in submicron primary marine aerosol?. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4964-4973.	3.3	89
83	Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. Journal of Geophysical Research, 2011, 116, .	3.3	86
84	The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution. Atmospheric Chemistry and Physics, 2006, 6, 4601-4616.	4.9	85
85	Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	85
86	On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmospheric Chemistry and Physics, 2013, 13, 741-759.	4.9	85
87	Variation of the mixing state of Saharan dust particles with atmospheric transport. Atmospheric Environment, 2010, 44, 3135-3146.	4.1	82
88	Laboratory Verification of PH-CPC's Ability to Monitor Atmospheric Sub-3 nm Clusters. Aerosol Science and Technology, 2009, 43, 126-135.	3.1	80
89	Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign. Atmospheric Chemistry and Physics, 2011, 11, 1065-1082.	4.9	79
90	Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies. Atmospheric Chemistry and Physics, 2012, 12, 10797-10816.	4.9	79

#	Article	IF	CITATIONS
91	Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmospheric Chemistry and Physics, 2013, 13, 895-916.	4.9	78
92	The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm Marine Stratocumulus Clouds: A Test of MAST Hypotheses 1i and 1ii. Journals of the Atmospheric Sciences, 2000, 57, 2554-2569.	1.7	77
93	Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmospheric Research, 2008, 90, 278-286.	4.1	77
94	AÂEuropean aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28ÂACTRIS sites. Atmospheric Chemistry and Physics, 2018, 18, 7877-7911.	4.9	76
95	Aerosol formation during PARFORCE: Ternary nucleation of H2SO4, NH3, and H2O. Journal of Geophysical Research, 2002, 107, PAR 15-1.	3.3	75
96	Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 4997-5015.	4.9	75
97	Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?. Scientific Reports, 2015, 5, 14883.	3.3	75
98	Concentration and sources of atmospheric nitrous acid (HONO) at an urban site in Western China. Science of the Total Environment, 2017, 593-594, 165-172.	8.0	75
99	Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach. Scientific Reports, 2017, 7, 11475.	3.3	75
100	Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.	4.9	74
101	Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China. Atmospheric Chemistry and Physics, 2019, 19, 2283-2298.	4.9	74
102	Highlights of fifty years of atmospheric aerosol research at Mace Head. Atmospheric Research, 2008, 90, 338-355.	4.1	73
103	Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties. Environmental Science & Technology, 2020, 54, 7836-7847.	10.0	72
104	Relative contribution of submicron and supermicron particles to aerosol light scattering in the marine boundary layer. Journal of Geophysical Research, 2002, 107, PAR 8-1.	3.3	70
105	Submicron particle, radon, and soot carbon characteristics over the northeast Atlantic. Journal of Geophysical Research, 1993, 98, 1123-1135.	3.3	69
106	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2014, 14, 9061-9076.	4.9	68
107	The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmospheric Chemistry and Physics, 2006, 6, 2241-2272.	4.9	65
108	Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,850-11,863.	3.3	65

Colin O'Dowd

#	Article	IF	CITATIONS
109	Quantification of Coastal New Ultra-Fine Particles Formation from In situ and Chamber Measurements during the BIOFLUX Campaign. Environmental Chemistry, 2005, 2, 260.	1.5	64
110	Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols. Scientific Reports, 2017, 7, 6047.	3.3	63
111	Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 13844.	3.3	63
112	Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview. Atmospheric Chemistry and Physics, 2010, 10, 8413-8435.	4.9	61
113	Dimethyl sulfide, methane sulfonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay. Journal of Geophysical Research, 1996, 101, 22855-22867.	3.3	60
114	Extreme air pollution from residential solid fuel burning. Nature Sustainability, 2018, 1, 512-517.	23.7	59
115	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmospheric Chemistry and Physics, 2015, 15, 12211-12229.	4.9	58
116	Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments. Atmospheric Chemistry and Physics, 2017, 17, 7653-7669.	4.9	58
117	Airborne measurements of nucleation mode particles II: boreal forest nucleation events. Atmospheric Chemistry and Physics, 2009, 9, 937-944.	4.9	56
118	Volatility of aerosol at Mace Head, on the west coast of Ireland. Journal of Geophysical Research, 1990, 95, 13937-13948.	3.3	55
119	Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 3793-3807.	4.9	55
120	Investigating organic aerosol loading in the remote marine environment. Atmospheric Chemistry and Physics, 2011, 11, 8847-8860.	4.9	54
121	Geochemistry of PM ₁₀ over Europe during the EMEP intensive measurement periods in summerÂ2012 and winterÂ2013. Atmospheric Chemistry and Physics, 2016, 16, 6107-6129.	4.9	54
122	Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi'an, northwestern China. Atmospheric Chemistry and Physics, 2020, 20, 5129-5144.	4.9	54
123	Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies. Journal of Geophysical Research, 2011, 116, .	3.3	53
124	Observations and modelling of aerosol growth in marine stratocumulus—case study. Atmospheric Environment, 1999, 33, 3053-3062.	4.1	52
125	Modelling the formation of organic particles in the atmosphere. Atmospheric Chemistry and Physics, 2004, 4, 1071-1083.	4.9	51
126	On the occurrence of open ocean particle production and growth events. Geophysical Research Letters, 2010, 37, .	4.0	51

#	Article	IF	CITATIONS
127	Dimethyl sulfide and its oxidation products in the atmosphere of the Atlantic and Southern Oceans. Atmospheric Environment, 1996, 30, 1895-1906.	4.1	50
128	New Directions: Organic matter contribution to marine aerosols and cloud condensation nuclei. Atmospheric Environment, 2008, 42, 7821-7822.	4.1	49
129	Light scattering enhancement factors in the marine boundary layer (Mace Head, Ireland). Journal of Geophysical Research, 2010, 115, .	3.3	48
130	Biogenic coastal aerosol production and its influence on aerosol radiative properties. Journal of Geophysical Research, 2001, 106, 1545-1549.	3.3	47
131	Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX. Atmospheric Chemistry and Physics, 2006, 6, 3289-3301.	4.9	47
132	Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates. Atmospheric Chemistry and Physics, 2007, 7, 1491-1501.	4.9	47
133	Evaluation of European air quality modelled by CAMx including the volatility basis set scheme. Atmospheric Chemistry and Physics, 2016, 16, 10313-10332.	4.9	47
134	Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques. Atmospheric Chemistry and Physics, 2014, 14, 12109-12132.	4.9	46
135	Simulating ultrafine particle formation in Europe using a regional CTM: contribution of primary emissions versus secondary formation to aerosol number concentrations. Atmospheric Chemistry and Physics, 2012, 12, 8663-8677.	4.9	45
136	On the representativeness of coastal aerosol studies to open ocean studies: Mace Head – a case study. Atmospheric Chemistry and Physics, 2009, 9, 9635-9646.	4.9	44
137	Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. Journal of Geophysical Research, 2012, 117, .	3.3	44
138	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	5.3	44
139	Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM _{2.5} from Xi'an, northwestern China. Atmospheric Measurement Techniques, 2018, 11, 3447-3456.	3.1	44
140	Mid-latitude North-Atlantic aerosol characteristics in clean and polluted air. Atmospheric Research, 2001, 58, 167-185.	4.1	42
141	Lidar observations of atmospheric boundary layer structure and sea spray aerosol plumes generation and transport at Mace Head, Ireland (PARFORCE experiment). Journal of Geophysical Research, 2002, 107, PAR 11-1.	3.3	42
142	Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism. Atmospheric Chemistry and Physics, 2010, 10, 7009-7016.	4.9	42
143	Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?. Atmospheric Chemistry and Physics, 2014, 14, 10687-10704.	4.9	42
144	Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter. Atmospheric Chemistry and Physics, 2019, 19, 10319-10334.	4.9	42

#	Article	IF	CITATIONS
145	SO ₂ oxidation products other than H ₂ SO ₄ as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications. Atmospheric Chemistry and Physics, 2008, 8, 7255-7264.	4.9	41
146	Variations in tropospheric submicron particle size distributions across the European continent 2008–2009. Atmospheric Chemistry and Physics, 2014, 14, 4327-4348.	4.9	41
147	Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements. Environmental Science & Technology, 2019, 53, 5176-5186.	10.0	41
148	European aerosol phenomenology â^' 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	10.0	41
149	A Case Study of Ships Forming and Not Forming Tracks in Moderately Polluted Clouds. Journals of the Atmospheric Sciences, 2000, 57, 2729-2747.	1.7	40
150	An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2). Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 290.	1.6	40
151	Aerosol distribution over Europe: a model evaluation study with detailed aerosol microphysics. Atmospheric Chemistry and Physics, 2008, 8, 1591-1607.	4.9	40
152	Physical characteristics of the ambient aerosol at mace head. Atmospheric Environment Part A General Topics, 1991, 25, 557-562.	1.3	39
153	Aerosol dynamics in ship tracks. Journal of Geophysical Research, 1999, 104, 31077-31095.	3.3	39
154	Modeling heterogeneous sulphate production in maritime stratiform clouds. Journal of Geophysical Research, 2000, 105, 7143-7160.	3.3	39
155	Composition of 15–85 nm particles in marine air. Atmospheric Chemistry and Physics, 2014, 14, 11557-11569.	4.9	39
156	Novel insights on new particle formation derived from a pan-european observing system. Scientific Reports, 2018, 8, 1482.	3.3	39
157	Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 359-379.	1.6	38
158	Size-differentiated volatility analysis of internally mixed laboratory-generated aerosol. Journal of Aerosol Science, 2002, 33, 555-579.	3.8	38
159	Missing SO ₂ oxidant in the coastal atmosphere? – observations from high-resolution measurements of OH and atmospheric sulfur compounds. Atmospheric Chemistry and Physics, 2014, 14, 12209-12223.	4.9	38
160	On the Origin of AMS "Cooking Organic Aerosol―at a Rural Site. Environmental Science & Technology, 2015, 49, 13964-13972.	10.0	38
161	Observations of accumulation mode aerosol composition and soot carbon concentrations by means of a high-temperature volatility technique. Journal of Geophysical Research, 1996, 101, 19583-19591.	3.3	37
162	A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer. Journals of the Atmospheric Sciences, 2000, 57, 2748-2764.	1.7	37

#	Article	IF	CITATIONS
163	Light scattering properties of sea-salt aerosol particles inferred from modeling studies and ground-based measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101, 498-511.	2.3	37
164	Volcanic sulphate and arctic dust plumes over the North Atlantic Ocean. Atmospheric Environment, 2009, 43, 4968-4974.	4.1	37
165	Stable isotopes measurements reveal dual carbon pools contributing to organic matter enrichment in marine aerosol. Scientific Reports, 2016, 6, 36675.	3.3	37
166	Growth rates during coastal and marine new particle formation in western Ireland. Journal of Geophysical Research, 2010, 115, .	3.3	36
167	Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography–mass spectrometry and ion chromatography approaches. Atmospheric Measurement Techniques, 2014, 7, 2027-2035.	3.1	36
168	Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe. Atmospheric Chemistry and Physics, 2019, 19, 3747-3768.	4.9	36
169	The use of the pulse height analyser ultrafine condensation particle counter (PHA-UCPC) technique applied to sizing of nucleation mode particles of differing chemical composition. Journal of Aerosol Science, 2004, 35, 205-216.	3.8	35
170	A statistical analysis of North East Atlantic (submicron) aerosol size distributions. Atmospheric Chemistry and Physics, 2011, 11, 12567-12578.	4.9	35
171	Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme. Atmospheric Chemistry and Physics, 2019, 19, 15247-15270.	4.9	35
172	A model prediction of the yield of cloud condensation nuclei from coastal nucleation events. Journal of Geophysical Research, 2002, 107, PAR 3-1.	3.3	34
173	Modelling Iodine Particle Formation and Growth from Seaweed in a Chamber. Environmental Chemistry, 2005, 2, 271.	1.5	34
174	Model evaluation of marine primary organic aerosol emission schemes. Atmospheric Chemistry and Physics, 2012, 12, 8553-8566.	4.9	34
175	Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment. ACS Earth and Space Chemistry, 2019, 3, 854-862.	2.7	34
176	Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 9101-9114.	4.9	34
177	Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state. Atmospheric Chemistry and Physics, 2014, 14, 11731-11752.	4.9	33
178	The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations. Atmospheric Chemistry and Physics, 2010, 10, 2117-2128.	4.9	32
179	Sea-spray regulates sulfate cloud droplet activation over oceans. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	32
180	Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environmental Science & Technology, 2017, 51, 10624-10632.	10.0	31

#	Article	IF	CITATIONS
181	The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO ₂ measurements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190513.	4.0	31
182	Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 324-343.	1.6	30
183	Statistical characteristics and predictability of particle formation events at Mace Head. Journal of Geophysical Research, 2006, 111, .	3.3	30
184	Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona during SAPUSS. Atmospheric Chemistry and Physics, 2013, 13, 4983-4996.	4.9	30
185	Volatility of elemental carbon. Geophysical Research Letters, 1994, 21, 1719-1722.	4.0	29
186	The Release of Bystander Factor(s) from Tissue Explant Cultures of Rainbow Trout (Onchorhynchus) Tj ETQq0 0 C) rgBT /Ovo	erlock 10 Tf S
187	Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring. Atmospheric Chemistry and Physics, 2007, 7, 1869-1878.	4.9	29
188	Iodine dioxide nucleation simulations in coastal and remote marine environments. Journal of Geophysical Research, 2009, 114, .	3.3	29
189	Observations of high concentrations of I ₂ and IO in coastal air supporting iodineâ€oxide driven coastal new particle formation. Geophysical Research Letters, 2010, 37, .	4.0	29
190	An Assessment of Pseudo-Operational Ground-Based Light Detection and Ranging Sensors to Determine the Boundary-Layer Structure in the Coastal Atmosphere. Advances in Meteorology, 2012, 2012, 1-18.	1.6	29
191	Ocean–Atmosphere Interactions of Particles. Springer Earth System Sciences, 2014, , 171-246.	0.2	29

192	Ground-based retrieval of continental and marine warm cloud microphysics. Atmospheric Measurement Techniques, 2011, 4, 2749-2765.	3.1	27
193	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	4.9	27
194	Sea spray as an obscured source for marine cloud nuclei. Nature Geoscience, 2022, 15, 282-286.	12.9	27
195	An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2). Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 290-320.	1.6	26
196	Role of the volatile fraction of submicron marine aerosol on its hygroscopic properties. Atmospheric Research, 2008, 90, 272-277.	4.1	26
197	Growth Inhibitory Activity of Extracted Material and Isolated Compounds from the Fruits of <i>Kigelia pinnata</i> . Planta Medica, 2010, 76, 1840-1846.	1.3	26
	Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms.		

198Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms.
Environment International, 2020, 140, 105732.10.026

#	Article	IF	CITATIONS
199	Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of the Total Environment, 2020, 717, 137190.	8.0	26
200	Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions. Atmospheric Measurement Techniques, 2018, 11, 2583-2599.	3.1	25
201	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
202	Correction to "New particle formation from photooxidation of diiodomethane (CH2I2)― Journal of Geophysical Research, 2003, 108, .	3.3	24
203	The Eyjafjallajökull ash plume – Part I: Physical, chemical and optical characteristics. Atmospheric Environment, 2012, 48, 129-142.	4.1	24
204	Assessment of changing meteorology and emissions on air quality using a regional climate model: Impact on ozone. Atmospheric Environment, 2013, 69, 198-210.	4.1	24
205	The effect of clouds on aerosol growth in the rural atmosphere. Atmospheric Research, 2000, 54, 201-221.	4.1	23
206	Meteorological influences on coastal new particle formation. Journal of Geophysical Research, 2002, 107, PAR 7-1.	3.3	23
207	Does iodine gas released from seaweed contribute to dietary iodine intake?. Environmental Geochemistry and Health, 2011, 33, 389-397.	3.4	23
208	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	1.4	23
209	Uncertainties in the determination of global sub-micron marine organic matter emissions. Atmospheric Environment, 2012, 57, 289-300.	4.1	22
210	Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 401.	1.6	21
211	Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmospheric Chemistry and Physics, 2017, 17, 9797-9814.	4.9	21
212	Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. Atmospheric Chemistry and Physics, 2020, 20, 4193-4207.	4.9	21
213	Time-scale analysis of marine boundary layer aerosol evolution: Lagrangian case studies under clean and polluted cloudy conditions. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 423.	1.6	20
214	On the spatial extent and evolution of coastal aerosol plumes. Journal of Geophysical Research, 2002, 107, PAR 10-1.	3.3	20
215	Aerosol optical depth in clean marine and continental northeast Atlantic air. Journal of Geophysical Research, 2009, 114, .	3.3	20
216	Coastal lodine Emissions. 1. Release of I ₂ by <i>Laminaria digitata</i> in Chamber Experiments. Environmental Science & Technology, 2012, 46, 10413-10421.	10.0	20

#	Article	IF	CITATIONS
217	Bistable effect of organic enrichment on sea spray radiative properties. Geophysical Research Letters, 2013, 40, 6395-6398.	4.0	20
218	Regional climate model simulations of North Atlantic cyclones: frequency and intensity changes. Climate Research, 2008, 36, 1-16.	1.1	20
219	Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign at Väiö field station. Atmospheric Chemistry and Physics, 2007, 7, 3683-3700.	4.9	19
220	The regional aerosol-climate model REMO-HAM. Geoscientific Model Development, 2012, 5, 1323-1339.	3.6	19
221	Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses. Atmospheric Chemistry and Physics, 2020, 20, 3777-3791.	4.9	19
222	The formation and evolution of secondary organic aerosol during summer in Xi'an: Aqueous phase processing in fog-rain days. Science of the Total Environment, 2021, 756, 144077.	8.0	19
223	Direct Measurements of New-Particle Fluxes in the Coastal Environment. Environmental Chemistry, 2005, 2, 256.	1.5	19
224	A high temperature volatility technique for determination of atmospheric aerosol composition. Journal of Aerosol Science, 1992, 23, 905-908.	3.8	18
225	Evolution of the aerosol, cloud and boundary-layer dynamic and thermodynamic characteristics during the 2nd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 375-400.	1.6	18
226	The seaweeds <i>Fucus vesiculosus</i> and <i>Ascophyllum nodosum</i> are significant contributors to coastal iodine emissions. Atmospheric Chemistry and Physics, 2013, 13, 5255-5264.	4.9	18
227	Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques. Science of the Total Environment, 2014, 493, 197-208.	8.0	18
228	Measurement report: PM _{2.5} -bound nitrated aromatic compounds in Xi'an, Northwest China – seasonal variations and contributions to optical properties of brown carbon. Atmospheric Chemistry and Physics, 2021, 21, 3685-3697.	4.9	18
229	Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 348-374.	1.6	17
230	Statistical analysis of eight surface ozone measurement series for various sites in Ireland. Journal of Geophysical Research, 2010, 115, .	3.3	17
231	The Eyjafjallajökull ash plume – Part 2: Simulating ash cloud dispersion with REMOTE. Atmospheric Environment, 2012, 48, 143-151.	4.1	17
232	Study of Emissions from Domestic Solid-Fuel Stove Combustion in Ireland. Energy & Fuels, 2021, 35, 4966-4978.	5.1	17
233	Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 348.	1.6	16
234	Evolution of the aerosol, cloud and boundary-layer dynamic and thermodynamic characteristics during the 2nd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 375.	1.6	16

#	Article	IF	CITATIONS
235	Seasonal variations in the sources of organic aerosol in Xi'an, Northwest China: The importance of biomass burning and secondary formation. Science of the Total Environment, 2020, 737, 139666.	8.0	16
236	Contribution of Isoprene Oxidation Products to Marine Aerosol over the North-East Atlantic. Advances in Meteorology, 2010, 2010, 1-10.	1.6	15
237	On the contribution of organics to the North East Atlantic aerosol number concentration. Environmental Research Letters, 2012, 7, 044013.	5.2	15
238	Physicochemical properties of atmospheric aerosol at South UIST. Atmospheric Environment, 1996, 30, 3765-3776.	4.1	14
239	Marine aerosols and iodine emissions (Reply). Nature, 2005, 433, E13-E14.	27.8	14
240	Gene Expression and Enzyme Activity of Mitochondrial Proteins in Irradiated Rainbow Trout (Oncorhynchus Mykiss, Walbaum) Tissues <i>In Vitro</i> . Radiation Research, 2009, 171, 464-473.	1.5	14
241	Regional-Scale Ozone Deposition to North-East Atlantic Waters. Advances in Meteorology, 2010, 2010, 1-16.	1.6	14
242	Wind Speed Influences on Marine Aerosol Optical Depth. Advances in Meteorology, 2010, 2010, 1-7.	1.6	14
243	Modeled optical thickness of sea-salt aerosol. Journal of Geophysical Research, 2011, 116, .	3.3	14
244	Effect of horizontal resolution on meteorology and air-quality prediction with a regional scale model. Atmospheric Research, 2011, 101, 574-594.	4.1	14
245	Characterization of volcanic ash from the 2011 GrÃmsvötn eruption byÂmeans of single-particle analysis. Atmospheric Environment, 2013, 79, 411-420.	4.1	14
246	Measurement report of the change of PM2.5 composition during the COVID-19 lockdown in urban Xi'an: Enhanced secondary formation and oxidation. Science of the Total Environment, 2021, 791, 148126.	8.0	14
247	Wintertime aerosol dominated by solid-fuel-burning emissions across Ireland: insight into the spatial and chemical variation in submicron aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14091-14106.	4.9	14
248	Regional model simulation of North Atlantic cyclones: Present climate and idealized response to increased sea surface temperature. Journal of Geophysical Research, 2008, 113, .	3.3	13
249	Coastal lodine Emissions: Part 2. Chamber Experiments of Particle Formation from <i>Laminaria digitata</i> -Derived and Laboratory-Generated I ₂ . Environmental Science & Technology, 2012, 46, 10422-10428.	10.0	13
250	Contribution of Water-Soluble Organic Matter from Multiple Marine Geographic Eco-Regions to Aerosols around Antarctica. Environmental Science & Technology, 2020, 54, 7807-7817.	10.0	13
251	An assessment of the surface ozone trend in Ireland relevant to air pollution and environmental protection. Atmospheric Pollution Research, 2012, 3, 341-351.	3.8	12
252	Windâ€driven influences on aerosol light scattering in northâ€east Atlantic air. Geophysical Research Letters, 2012, 39, .	4.0	12

#	Article	IF	CITATIONS
253	Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar. Atmospheric Chemistry and Physics, 2015, 15, 5873-5885.	4.9	12
254	Marine submicron aerosol gradients, sources and sinks. Atmospheric Chemistry and Physics, 2016, 16, 12425-12439.	4.9	12
255	Evaluation of Fog and Low Stratus Cloud Microphysical Properties Derived from In Situ Sensor, Cloud Radar and SYRSOC Algorithm. Atmosphere, 2018, 9, 169.	2.3	12
256	Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 401-422.	1.6	11
257	Evaluating measurements of new particle concentrations, source rates, and spatial scales during coastal nucleation events using condensation particle counters. Journal of Geophysical Research, 2002, 107, PAR 6-1.	3.3	11
258	Performance of a venturi dilution chamber for sampling 3–20nm particles. Journal of Aerosol Science, 2005, 36, 535-540.	3.8	11
259	Hygroscopic and chemical characterisation of Po Valley aerosol. Atmospheric Chemistry and Physics, 2014, 14, 1557-1570.	4.9	11
260	Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution. Scientific Reports, 2017, 7, 44737.	3.3	11
261	Particulate methanesulfonic acid over the central Mediterranean Sea: Source region identification and relationship with phytoplankton activity. Atmospheric Research, 2020, 237, 104837.	4.1	11
262	Seasonal Variation of the Aerosol Light Scattering Coefficient in Marine Air of the Northeast Atlantic. Advances in Meteorology, 2011, 2011, 1-6.	1.6	10
263	Linking Marine Biological Activity to Aerosol Chemical Composition and Cloudâ€Relevant Properties Over the North Atlantic Ocean. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032246.	3.3	10
264	The impact of traffic on air quality in Ireland: insights from the simultaneous kerbside and suburban monitoring of submicron aerosols. Atmospheric Chemistry and Physics, 2020, 20, 10513-10529.	4.9	10
265	Impact of volcanic ash plume aerosol on cloud microphysics. Atmospheric Environment, 2012, 48, 205-218.	4.1	9
266	CALIOP near-real-time backscatter products compared to EARLINET data. Atmospheric Chemistry and Physics, 2015, 15, 12179-12191.	4.9	9
267	Atmospheric HCFC-22, HFC-125, and HFC-152a at Cape Point, South Africa. Environmental Science & Technology, 2019, 53, 8967-8975.	10.0	9
268	Comprehensive Source Apportionment of Submicron Aerosol in Shijiazhuang, China: Secondary Aerosol Formation and Holiday Effects. ACS Earth and Space Chemistry, 2020, 4, 947-957.	2.7	9
269	The relative importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: An improved multi-component aerosol-cloud droplet parametrization. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 1295-1313.	2.7	9
270	Time-scale analysis of marine boundary layer aerosol evolution: Lagrangian case studies under clean and polluted cloudy conditions. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 423-438.	1.6	8

#	Article	IF	CITATIONS
271	Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,538.	3.3	8
272	Comparisons of aerosol backscatter using satellite and ground lidars: implications for calibrating and validating spaceborne lidar. Scientific Reports, 2017, 7, 42337.	3.3	8
273	The vertical structure of aerosol and its relationship to boundaryâ€layer thermodynamics over the rural UK. Quarterly Journal of the Royal Meteorological Society, 1996, 122, 1799-1814.	2.7	7
274	Summertime Aerosol over the West of Ireland Dominated by Secondary Aerosol during Long-Range Transport. Atmosphere, 2019, 10, 59.	2.3	7
275	A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties. Atmospheric Chemistry and Physics, 2021, 21, 13031-13050.	4.9	7
276	New particle formation in the marine environment. , 1996, , 925-928.		6
277	New particle formation: nucleation rates & spatial scales in the coastal environment Journal of Aerosol Science, 1998, 29, S183-S184.	3.8	5
278	Organic contribution to sub-micron aerosol evolution over a boreal forest—a case study. Physical Chemistry Chemical Physics, 1999, 1, 5511-5516.	2.8	5
279	Seasonal Trends of Aerosol Hygroscopicity and Mixing State in Clean Marine and Polluted Continental Air Masses Over the Northeast Atlantic. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033851.	3.3	5
280	Effect of COVID-19 lockdown on regional pollution in Ireland. Air Quality, Atmosphere and Health, 2021, , 1-14.	3.3	5
281	Interpretation of roadside PM10 monitoring data from Sunderland, United Kingdom. Environmental Monitoring and Assessment, 2003, 82, 225-241.	2.7	4
282	Background levels of black carbon over remote marine locations. Atmospheric Research, 2022, 271, 106119.	4.1	4
283	Simulating Marine New Particle Formation and Growth Using the M7 Modal Aerosol Dynamics Modal. Advances in Meteorology, 2010, 2010, 1-9.	1.6	3
284	Primary Marine Aerosol Fluxes. Bulletin of the American Meteorological Society, 2011, 92, 489-491.	3.3	3
285	Distinct high molecular weight organic compound (HMW-OC) types in aerosol particles collected at a coastal urban site. Atmospheric Environment, 2017, 171, 118-125.	4.1	3
286	The impact of aerosol size-dependent hygroscopicity and mixing state on the cloud condensation nuclei potential over the north-east Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 8655-8675.	4.9	3
287	Abstract 4423: Antitumor activity of the novel oral highly selective Wee1 inhibitor Debio 0123. Cancer Research, 2019, 79, 4423-4423.	0.9	3
288	On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 6905-6916.	3.1	3

#	Article	IF	CITATIONS
289	Phytoplankton Impact on Marine Cloud Microphysical Properties Over the Northeast Atlantic Ocean. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
290	Eddy Correlation Measurements of Ozone Fluxes over Coastal Waters West of Ireland. Advances in Meteorology, 2010, 2010, 1-7.	1.6	2
291	Cleaner air: Brightening the pollution perspective?. , 2013, , .		2
292	Comparison of in-situ, satellite and ground-based remote sensing retrievals of liquid cloud microphysics during MACLOUD. AIP Conference Proceedings, 2013, , .	0.4	2
293	Enrichment of organic nitrogen in primary biological particles during advection over the North Atlantic. Atmospheric Environment, 2020, 222, 117160.	4.1	2
294	Comparison of Backscatter Coefficient at 1064 nm from CALIPSO and Ground–Based Ceilometers over Coastal and Non–Coastal Regions. Atmosphere, 2020, 11, 1190.	2.3	2
295	Abstract LB-257: Discovery and characterization of novel, highly potent and selective USP7 inhibitors. , 2015, , .		2
296	Abstract LB-087: Discovery and development of first-in-class orally bioavailable USP19 inhibitors. Cancer Research, 2019, 79, LB-087-LB-087.	0.9	2
297	Seasonality of Aerosol Sources Calls for Distinct Air Quality Mitigation Strategies. Toxics, 2022, 10, 121.	3.7	2
298	Vertical aerosol physico-chemical properties in a subsiding air mass. Journal of Aerosol Science, 1992, 23, 857-860.	3.8	1
299	Sulphate partitioning in marine aerosol. Journal of Aerosol Science, 1998, 29, S881-S882.	3.8	1
300	QUANTIFICATION OF AEROSOL NUCLEATION IN THE EUROPEAN BOUNDARY LAYER (QUEST): RESULTS FROM AN INTENSIVE FIELD CAMPAIGN IN BOREAL FOREST. Journal of Aerosol Science, 2004, 35, S1225-S1226.	3.8	1
301	Effect of instrumental particle sizing resolution on the modelling of aerosol radiative parameters. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 753-771.	2.3	1
302	Photochemical Impact on Ozone Fluxes in Coastal Waters. Advances in Meteorology, 2012, 2012, 1-6.	1.6	1
303	Measurements of stratospheric ozone at a mid-latitude observing station Valentia, Ireland (51.94° N,) Tj ETQq1 Atmospheric Chemistry, 2013, 70, 297-316.	1 0.78431 3.2	4 rgBT /Ove 1
304	Assessment of the effects of changing meteorology on future isoprene and isoprene SOA using a regional climate model. AIP Conference Proceedings, 2013, , .	0.4	1
305	Marine Aerosol and Secondary Particle Formation over the North Atlantic. , 2007, , 1102-1105.		1
306	Wind Speed Influences on Aerosol Optical Depth in Clean Marine Air. , 2007, , 1164-1168.		1

#	Article	IF	CITATIONS
307	A Global Emission Inventory of Submicron Sea-spray Aerosols. , 2007, , 1079-1082.		1
308	A Combined Organic–Inorganic Sea-spray Source Function. , 2007, , 1083-1087.		1
309	Parameterising Whitecap Coverage Using Sea Surface Imagery. , 2020, , 7-24.		1
310	Can nucleation occur in the cloud free marine boundary layer?. Journal of Aerosol Science, 1999, 30, S129-S130.	3.8	0
311	Aerosol concentrations and scattering coefficient at Mace Head, Ireland. AIP Conference Proceedings, 2000, , .	0.4	0
312	Title is missing!. Measurement Techniques, 2002, 45, 1035-1038.	0.6	0
313	On the review process: Editors speak. Eos, 2003, 84, 575.	0.1	0
314	The construction of an optical particle counter with sub- and super-micron counting capability. , 2007, , .		0
315	Improving Particle Detection Effi ciency of a Condensation Particle Counter by Means of Pulse Height Analysis. , 2007, , 378-381.		0
316	Influence of Marine Aerosols on Cloud Droplet Number Concentration over the Northâ€East Atlantic. , 2009, , .		0
317	Description of a biofluorescence optical particle counter. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 1750-1754.	2.3	Ο
318	Maintenance of iodine intake. Thyroid Research, 2013, 6, A52.	1.5	0
319	Ground-based remote sensing profiling of aerosols and mass concentration above Mace Head, Ireland. , 2013, , .		Ο
320	Modelling marine aerosol precursor vapours & impact on aerosol population. , 2013, , .		0
321	Submicron sea salt source fluxes. , 2013, , .		Ο
322	Aerosol light scattering dependency on wind speed in marine air. , 2013, , .		0
323	Intercontinental and regional transport of air pollution monitored at Mace Head, Ireland and over Europe. , 2013, , .		0
324	Assessment of the effect of trans-boundary air pollution on aerosol concentrations in Ireland. , 2013, , .		0

#	Article	IF	CITATIONS
325	Future aerosol concentrations in Europe: Effects of changing meteorology and emissions. , 2013, , .		0
326	A dual behavior of primary marine organics. , 2013, , .		0
327	Marine organics effect on sea-spray light scattering. , 2013, , .		0
328	Preface: 19th International Conference on Nucleation and Atmospheric Aerosols. , 2013, , .		0
329	Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean. Atmosphere, 2021, 12, 955.	2.3	0
330	Similarity Between Aerosol Physicochemical Properties at a Coastal Station and Open Ocean over the North Atlantic. , 2007, , 1098-1101.		0
331	Chemical Composition, Regional Sources, and Seasonal Patterns of TSP Aerosols at Mace Head. , 2007, , 850-854.		0
332	Chemical Fluxes in North-east Atlantic Air. , 2007, , 1064-1069.		0
333	Evaluation of Measured and Predicted Cloud Condensation Nuclei in Mace Head. , 2007, , 1115-1119.		0
334	On the Contribution of Isoprene Oxidation to Marine Aerosol over the Northeast Atlantic. , 2007, , 1070-1074.		0
335	Air Ion Measurements at Mace Head on the West Coast of Ireland. , 2007, , 373-377.		0
336	Simulations of Iodine Dioxide Nucleation. , 2007, , 974-978.		0
337	Aerosol Distributions over Europe: A Regional Model Evaluation. , 2007, , 503-506.		0
338	Sea Salt Production and Distribution over the North-east Atlantic. , 2007, , 1110-1114.		0
339	Role of the Volatile Fraction of Marine Aerosol on its Hygroscopic Properties. , 2007, , 1106-1109.		0
340	Highlights of Fifty Years of Atmospheric Aerosol Research at Mace Head. , 2007, , 625-629.		0
341	Aerosol in Global Atmosphere. , 2012, , 239-278.		0
342	Aerosol in Global Atmosphere. , 2012, , 111-148.		0

#	Article	IF	CITATIONS
343	Ervations of cloud-induced aerosol growth. , 1996, , 937-940.		Ο
344	Abstract LB-159: A novel, potent and selective inhibitor of Wee1 with robust antitumor activity in various cancer xenograph models. , 2016, , .		0
345	Abstract B17: Development of novel, potent orally available Wee1 inhibitors with robust antitumor efficacy in vivo. , 2017, , .		0
346	Abstract LB-319: Development and characterization ofADC999: A novel, potent orally available Wee1 inhibitor with robust antitumor efficacyin vivo. , 2017, , .		0
347	Abstract 1181: Discovery and development of novel highly potent and selective inhibitors of USP19 using UbiPlexâ,,¢. , 2017, , .		Ο
348	Abstract 4869: Discovery and characterization of highly potent and selective USP7 inhibitors and benchmarking against clinical MDM2 antagonists. , 2018, , .		0
349	Abstract 1935: Accessing the cancer DUBome with UbiPlex: A bespoke drug discovery platform for deubiquitinase enzymes. , 2018, , .		Ο
350	Comparison of backscatter coefficient at 1064nm from CALIPSO and ground-based ceilometers over coastal and non-coastal regions. , 2020, , .		0
351	Abstract LB-049: Targeting the ubiquitin-proteasome system by small molecule inhibition of the DUBome. , 2019, , .		0