Marc Hammarlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864672/publications.pdf

Version: 2024-02-01

33 papers 2,632 citations

279798 23 h-index 395702 33 g-index

45 all docs

45 docs citations

45 times ranked

2738 citing authors

#	Article	IF	Citations
1	Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. ELife, 2022, 11, .	6.0	18
2	Neurexin and frizzled intercept axonal transport at microtubule minus ends to control synapse formation. Developmental Cell, 2022, 57, 1802-1816.e4.	7.0	9
3	A head-to-head comparison of ribodepletion and polyA selection approaches for <i>Caenorhabditis elegans</i> low input RNA-sequencing libraries. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
4	In silico analysis of the transcriptional regulatory logic of neuronal identity specification throughout the C. elegans nervous system. ELife, 2021, 10, .	6.0	16
5	Molecular topography of an entire nervous system. Cell, 2021, 184, 4329-4347.e23.	28.9	328
6	rab-27 acts in an intestinal pathway to inhibit axon regeneration in C. elegans. PLoS Genetics, 2021, 17, e1009877.	3 . 5	8
7	A Functional Non-coding RNA Is Produced from xbp-1 mRNA. Neuron, 2020, 107, 854-863.e6.	8.1	10
8	The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. Journal of Cell Biology, 2020, 219, .	5.2	11
9	Mechanisms of injury-induced axon degeneration. Current Opinion in Neurobiology, 2019, 57, 171-178.	4.2	29
10	Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration. Cell Reports, 2018, 23, 415-428.	6.4	43
11	\hat{l}^3 -Neurexin and Frizzled Mediate Parallel Synapse Assembly Pathways Antagonized by Receptor Endocytosis. Neuron, 2018, 100, 150-166.e4.	8.1	57
12	The CeNGEN Project: The Complete Gene Expression Map of an Entire Nervous System. Neuron, 2018, 99, 430-433.	8.1	85
13	Aberrant information transfer interferes with functional axon regeneration. ELife, 2018, 7, .	6.0	18
14	Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration. Experimental Neurology, 2017, 287, 300-309.	4.1	33
15	Inhibiting poly(ADP-ribosylation) improves axon regeneration. ELife, 2016, 5, .	6.0	38
16	Mitochondria Localize to Injured Axons to Support Regeneration. Neuron, 2016, 92, 1308-1323.	8.1	190
17	Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury. ENeuro, 2016, 3, ENEURO.0270-16.2016.	1.9	22
18	RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8451-8456.	7.1	58

#	Article	IF	CITATIONS
19	Exposure to Mitochondrial Genotoxins and Dopaminergic Neurodegeneration in Caenorhabditis elegans. PLoS ONE, 2014, 9, e114459.	2.5	65
20	Axon regeneration in C. elegans. Current Opinion in Neurobiology, 2014, 27, 199-207.	4.2	49
21	Axon Regeneration Genes Identified by RNAi Screening in <i>C. elegans</i> . Journal of Neuroscience, 2014, 34, 629-645.	3.6	87
22	Insulin/IGF1 Signaling Inhibits Age-Dependent Axon Regeneration. Neuron, 2014, 81, 561-573.	8.1	144
23	The <scp>R</scp> tc <scp>B RNA</scp> ligase is an essential component of the metazoan unfolded protein response. EMBO Reports, 2014, 15, 1278-1285.	4.5	139
24	Syndecan Promotes Axon Regeneration by Stabilizing Growth Cone Migration. Cell Reports, 2014, 8, 272-283.	6.4	55
25	A multi-channel device for high-density target-selective stimulation and long-term monitoring of cells and subcellular features in C. elegans. Lab on A Chip, 2014, 14, 4513-4522.	6.0	56
26	Neuron-Specific Feeding RNAi in C. elegans and Its Use in a Screen for Essential Genes Required for GABA Neuron Function. PLoS Genetics, 2013, 9, e1003921.	3 . 5	57
27	Notch Signaling Inhibits Axon Regeneration. Neuron, 2012, 73, 268-278.	8.1	97
28	In vivo Laser Axotomy in C. elegans . Journal of Visualized Experiments, 2011, , .	0.3	35
29	Axon Regeneration Requires a Conserved MAP Kinase Pathway. Science, 2009, 323, 802-806.	12.6	387
30	CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons. Journal of Cell Biology, 2008, 180, 483-491.	5.2	88
31	Open Syntaxin Docks Synaptic Vesicles. PLoS Biology, 2007, 5, e198.	5.6	164
32	Heterozygous Insertions Alter Crossover Distribution but Allow Crossover Interference in Caenorhabditis elegans. Genetics, 2005, 171, 1047-1056.	2.9	38
33	Mutations in \hat{I}^2 -Spectrin Disrupt Axon Outgrowth and Sarcomere Structure. Journal of Cell Biology, 2000, 149, 931-942.	5.2	112