Michael B O'connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone Methyltransferase Activity of a Drosophila Polycomb Group Repressor Complex. Cell, 2002, 111, 197-208.	13.5	1,416
2	MADR1, a MAD-Related Protein That Functions in BMP2 Signaling Pathways. Cell, 1996, 85, 489-500.	13.5	692
3	Ecdysone Control of Developmental Transitions: Lessons from <i>Drosophila</i> Research. Annual Review of Entomology, 2013, 58, 497-516.	5.7	511
4	Production of a DPP Activity Gradient in the Early Drosophila Embryo through the Opposing Actions of the SOG and TLD Proteins. Cell, 1997, 91, 417-426.	13.5	409
5	Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13773-13778.	3.3	409
6	Prothoracicotropic Hormone Regulates Developmental Timing and Body Size in Drosophila. Developmental Cell, 2007, 13, 857-871.	3.1	388
7	The BMP Homolog Gbb Provides a Retrograde Signal that Regulates Synaptic Growth at the Drosophila Neuromuscular Junction. Neuron, 2003, 39, 241-254.	3.8	364
8	Characterization and relationship of dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell, 1994, 78, 251-261.	13.5	317
9	Elements of the Drosophila Bithorax Complex That Mediate Repression by Polycomb Group Products. Developmental Biology, 1993, 158, 131-144.	0.9	311
10	The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Cell, 1991, 67, 469-481.	13.5	308
11	The Insect Neuropeptide PTTH Activates Receptor Tyrosine Kinase Torso to Initiate Metamorphosis. Science, 2009, 326, 1403-1405.	6.0	307
12	Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11043-11048.	3.3	300
13	The Drosophila BMP Type II Receptor Wishful Thinking Regulates Neuromuscular Synapse Morphology and Function. Neuron, 2002, 33, 529-543.	3.8	297
14	Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo. Cell, 2005, 120, 873-886.	13.5	287
15	Twisted gastrulation is a conserved extracellular BMP antagonist. Nature, 2001, 410, 479-483.	13.7	276
16	Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Developmental Biology, 2006, 298, 555-570.	0.9	274
17	Drosophila Dpp signaling is mediated by the punt gene product: A dual ligand-binding type II receptor of the TGFβ receptor family. Cell, 1995, 80, 899-908.	13.5	269
18	Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development (Cambridge), 2006, 133, 183-193.	1.2	266

#	Article	IF	CITATIONS
19	Phantom encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochemistry and Molecular Biology, 2004, 34, 991-1010.	1.2	263
20	The Xenopus Dorsalizing Factor noggin Ventralizes Drosophila Embryos by Preventing DPP from Activating Its Receptor. Cell, 1996, 86, 607-617.	13.5	236
21	A Fat Body-Derived IGF-like Peptide Regulates Postfeeding Growth in Drosophila. Developmental Cell, 2009, 17, 885-891.	3.1	236
22	TGF-Î ² Signaling Activates Steroid Hormone Receptor Expression during Neuronal Remodeling in the Drosophila Brain. Cell, 2003, 112, 303-315.	13.5	215
23	Highwire Regulates Presynaptic BMP Signaling Essential for Synaptic Growth. Neuron, 2004, 41, 891-905.	3.8	212
24	The drosophila schnurri gene acts in the Dpp/TGFβ signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell, 1995, 81, 781-790.	13.5	209
25	Molecular evolution of the insect Halloween family of cytochrome P450s: Phylogeny, gene organization and functional conservation. Insect Biochemistry and Molecular Biology, 2007, 37, 741-753.	1.2	202
26	The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo Genes and Development, 1994, 8, 2588-2601.	2.7	196
27	Axonal Heparan Sulfate Proteoglycans Regulate the Distribution and Efficiency of the Repellent Slit during Midline Axon Guidance. Current Biology, 2004, 14, 499-504.	1.8	182
28	The extracellular regulation of bone morphogenetic protein signaling. Development (Cambridge), 2009, 136, 3715-3728.	1.2	181
29	The <i>Drosophila</i> Activin receptor Baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. Genes and Development, 1999, 13, 98-111.	2.7	178
30	Neuroendocrine regulation of <i>Drosophila</i> metamorphosis requires TGFβ/Activin signaling. Development (Cambridge), 2011, 138, 2693-2703.	1.2	162
31	Mapping a cloned gene under sporulation control by inserttion of a drug resistance marker into the Bacillus subtilis chromosome. Journal of Bacteriology, 1980, 142, 90-98.	1.0	162
32	Discrete pulses of molting hormone, 20-hydroxyecdysone, during late larval development ofDrosophila melanogaster: Correlations with changes in gene activity. Developmental Dynamics, 2006, 235, 315-326.	0.8	159
33	Iron Is Essential for Neuron Development and Memory Function in Mouse Hippocampus. Journal of Nutrition, 2009, 139, 672-679.	1.3	159
34	The BMP-Binding Protein Crossveinless 2 Is a Short-Range, Concentration-Dependent, Biphasic Modulator of BMP Signaling in Drosophila. Developmental Cell, 2008, 14, 940-953.	3.1	157
35	Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus, 2005, 15, 1094-1102.	0.9	154
36	Morphogenetic Apoptosis: A Mechanism for Correcting Discontinuities in Morphogen Gradients. Developmental Biology, 2002, 251, 74-90.	0.9	131

#	Article	IF	CITATIONS
37	Glia instruct developmental neuronal remodeling through TGF-β signaling. Nature Neuroscience, 2011, 14, 821-823.	7.1	130
38	A role for βFTZ-F1 in regulating ecdysteroid titers during post-embryonic development in Drosophila melanogaster. Developmental Biology, 2005, 282, 84-94.	0.9	119
39	The TGFβ activated kinase TAK1 regulates vascular development in vivo. Development (Cambridge), 2006, 133, 1529-1541.	1.2	118
40	Neuroendocrine Control of <i>Drosophila</i> Larval Light Preference. Science, 2013, 341, 1113-1116.	6.0	118
41	TAK1 Participates in c-Jun N-Terminal Kinase Signaling during Drosophila Development. Molecular and Cellular Biology, 2000, 20, 3015-3026.	1.1	116
42	Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster. Cell, 2015, 163, 907-919.	13.5	115
43	Robust, bistable patterning of the dorsal surface of the Drosophila embryo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11613-11618.	3.3	114
44	Developmental Checkpoints and Feedback Circuits Time Insect Maturation. Current Topics in Developmental Biology, 2013, 103, 1-33.	1.0	113
45	Identification of a Drosophila activin receptor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9475-9479.	3.3	109
46	Physical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo. Development (Cambridge), 2003, 130, 4673-4682.	1.2	103
47	The mammalian twisted gastrulation gene functions in foregut and craniofacial development. Developmental Biology, 2004, 267, 374-386.	0.9	100
48	Steroid Hormone Inactivation Is Required during the Juvenile-Adult Transition in Drosophila. Developmental Cell, 2010, 19, 895-902.	3.1	98
49	Enhancer point mutation results in a homeotic transformation in Drosophila. Science, 1994, 264, 968-971.	6.0	94
50	Midgut-Derived Activin Regulates Glucagon-like Action in the Fat Body and Glycemic Control. Cell Metabolism, 2017, 25, 386-399.	7.2	93
51	Retrograde Gbb signaling through the Bmp type 2 receptor Wishful Thinking regulates systemic FMRFa expression in Drosophila. Development (Cambridge), 2003, 130, 5457-5470.	1.2	88
52	The crossveinless gene encodes a new member of the Twisted gastrulation family of BMP-binding proteins which, with Short gastrulation, promotes BMP signaling in the crossveins of the Drosophila wing. Developmental Biology, 2005, 282, 70-83.	0.9	87
53	Functional Analysis of Repressor Binding Sites in the iab-2 Regulatory Region of the abdominal-A Homeotic Gene. Developmental Biology, 2000, 218, 38-52.	0.9	86
54	Organism-Scale Modeling of Early Drosophila Patterning via Bone Morphogenetic Proteins. Developmental Cell, 2010, 18, 260-274.	3.1	85

#	Article	IF	CITATIONS
55	Tiling of R7 Axons in the Drosophila Visual System Is Mediated Both by Transduction of an Activin Signal to the Nucleus and by Mutual Repulsion. Neuron, 2007, 56, 793-806.	3.8	84
56	Systemic Activin signaling independently regulates sugar homeostasis, cellular metabolism, and pH balance in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5729-5734.	3.3	84
57	A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing. Developmental Cell, 2016, 37, 558-570.	3.1	77
58	Two Domains of the tolloid Protein Contribute to Its Unusual Genetic Interaction with decapentaplegic. Developmental Biology, 1994, 162, 209-220.	0.9	73
59	The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Reports, 2016, 16, 247-262.	2.9	73
60	Characterization of tolloid-related-1: A BMP-1-like Product That Is Required during Larval and Pupal Stages of Drosophila Development. Developmental Biology, 1994, 166, 569-586.	0.9	72
61	The metalloprotease Tolloid-related and its TGF-β-like substrate Dawdle regulate Drosophila motoneuron axon guidance. Development (Cambridge), 2006, 133, 4969-4979.	1.2	71
62	A phosphoproteomics approach to elucidate neuropeptide signal transduction controlling insect metamorphosis. Insect Biochemistry and Molecular Biology, 2009, 39, 475-483.	1.2	70
63	TGF-β Family Signaling in <i>Drosophila</i> . Cold Spring Harbor Perspectives in Biology, 2017, 9, a022152.	2.3	69
64	Photoreceptor-Derived Activin Promotes Dendritic Termination and Restricts the Receptive Fields of First-Order Interneurons in Drosophila. Neuron, 2014, 81, 830-846.	3.8	68
65	<i>Drosophila</i> Activin-l ² and the Activin-like product Dawdle function redundantly to regulate proliferation in the larval brain. Development (Cambridge), 2008, 135, 513-521.	1.2	67
66	Regulation of Drosophila hematopoietic sites by Activin-β from active sensory neurons. Nature Communications, 2017, 8, 15990.	5.8	66
67	Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in <i>Drosophila</i> . Development (Cambridge), 2013, 140, 4730-4739.	1.2	65
68	Is Chordin a Long-Range- or Short-Range-Acting Factor? Roles for BMP1-Related Metalloproteases in Chordin and BMP4 Autofeedback Loop Regulation. Developmental Biology, 2000, 223, 120-138.	0.9	64
69	Matching catalytic activity to developmental function: Tolloid-related processes Sog in order to help specify the posterior crossvein in the Drosophila wing. Development (Cambridge), 2005, 132, 2645-2656.	1.2	64
70	Presynaptic Contributions of Chordin to Hippocampal Plasticity and Spatial Learning. Journal of Neuroscience, 2007, 27, 7740-7750.	1.7	58
71	Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development (Cambridge), 2018, 145, .	1.2	56
72	Bone Morphogenetic Proteins Signal Via SMAD and Mitogen-activated Protein (MAP) Kinase Pathways at Distinct Times during Osteoclastogenesis. Journal of Biological Chemistry, 2013, 288, 37230-37240.	1.6	55

#	Article	IF	CITATIONS
73	The Insulin-Like Proteins dILPs-2/5 Determine Diapause Inducibility in Drosophila. PLoS ONE, 2016, 11, e0163680.	1.1	55
74	Control of the insect metamorphic transition by ecdysteroid production and secretion. Current Opinion in Insect Science, 2021, 43, 11-20.	2.2	54
75	Canonical TGF-Î ² Signaling Is Required for the Balance of Excitatory/Inhibitory Transmission within the Hippocampus and Prepulse Inhibition of Acoustic Startle. Journal of Neuroscience, 2010, 30, 6025-6035.	1.7	53
76	Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. Journal of Neurodevelopmental Disorders, 2010, 2, 133-143.	1.5	51
77	Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance. PLoS ONE, 2007, 2, e375.	1.1	50
78	Role of the F factor oriV1 region in recA-independent illegitimate recombination. Journal of Molecular Biology, 1984, 175, 263-284.	2.0	49
79	A new insertion sequence, IS121, is found on the Mu dl1 (Ap lac) bacteriophage and the Escherichia coli K-12 chromosome. Journal of Bacteriology, 1983, 156, 669-679.	1.0	49
80	Mechanisms for Removal of Developmentally Abnormal Cells: Cell Competition and Morphogenetic Apoptosis. Journal of Biochemistry, 2004, 136, 13-17.	0.9	47
81	Transcriptional Control of Steroid Biosynthesis Genes in the Drosophila Prothoracic Gland by Ventral Veins Lacking and Knirps. PLoS Genetics, 2014, 10, e1004343.	1.5	46
82	Strategies for exploring TGF-Î ² signaling in Drosophila. Methods, 2014, 68, 183-193.	1.9	45
83	Extremes of Lineage Plasticity in the Drosophila Brain. Current Biology, 2013, 23, 1908-1913.	1.8	43
84	Robustness of Embryonic Spatial Patterning in Drosophila melanogaster. Current Topics in Developmental Biology, 2008, 81, 65-111.	1.0	41
85	Regulation of neuroblast proliferation by surface glia in the Drosophila larval brain. Scientific Reports, 2018, 8, 3730.	1.6	41
86	dSno Facilitates Baboon Signaling in the Drosophila Brain by Switching the Affinity of Medea Away From Mad and Toward dSmad2. Genetics, 2006, 174, 1299-1313.	1.2	40
87	Mapping of DNA gyrase cleavage sites in vivo oxolinic acid induced cleavages in plasmid pBR322. Journal of Molecular Biology, 1985, 181, 545-550.	2.0	39
88	The Drosophila Activin-like ligand Dawdle signals preferentially through one isoform of the Type-I receptor Baboon. Mechanisms of Development, 2009, 126, 950-957.	1.7	39
89	Diapause. Current Topics in Developmental Biology, 2013, 105, 213-246.	1.0	39
90	Two Distinct Transmembrane Serine/Threonine Kinases from <i>Drosophila melanogaster</i> Form an Activin Receptor Complex. Molecular and Cellular Biology, 1994, 14, 944-950.	1.1	39

#	Article	IF	CITATIONS
91	Shaping BMP Morphogen Gradients through Enzyme-Substrate Interactions. Developmental Cell, 2011, 21, 375-383.	3.1	38
92	Nemo kinase interacts with Mad to coordinate synaptic growth at the <i>Drosophila</i> neuromuscular junction. Journal of Cell Biology, 2009, 185, 713-725.	2.3	36
93	The BMP2/4 ortholog Dpp can function as an inter-organ signal that regulates developmental timing. Life Science Alliance, 2018, 1, e201800216.	1.3	35
94	Twisted gastrulation and chordin inhibit differentiation and mineralization in MC3T3-E1 osteoblast-like cells. Bone, 2005, 36, 617-626.	1.4	34
95	R-Smad Competition Controls Activin Receptor Output in Drosophila. PLoS ONE, 2012, 7, e36548.	1.1	34
96	Expression of TAK1, a mediator of TGF-β and BMP signaling, during mouse embryonic development. Gene Expression Patterns, 2003, 3, 131-134.	0.3	33
97	Studies on the black box: Incorporation of 3-oxo-7-dehydrocholesterol into ecdysteroids by Drosophila melanogaster and Manduca sexta. Insect Biochemistry and Molecular Biology, 2009, 39, 677-687.	1.2	33
98	The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier. PLoS Genetics, 2015, 11, e1005712.	1.5	32
99	Activin receptor inhibition by Smad2 regulates <i>Drosophila</i> wing disc patterning through BMP-response elements. Development (Cambridge), 2013, 140, 649-659.	1.2	31
100	Engineering multiple species-like genetic incompatibilities in insects. Nature Communications, 2020, 11, 4468.	5.8	31
101	DNA-binding domain mutations in SMAD genes yield dominant-negative proteins or a neomorphic protein that can activate WG target genes in Drosophila. Development (Cambridge), 2005, 132, 4883-4894.	1.2	28
102	Wing-to-Leg Homeosis by Spineless Causes Apoptosis Regulated by Fish-lips, a Novel Leucine-Rich Repeat Transmembrane Protein. Molecular and Cellular Biology, 2005, 25, 3140-3150.	1.1	25
103	Drosophila Histone Deacetylase-3 Controls Imaginal Disc Size through Suppression of Apoptosis. PLoS Genetics, 2008, 4, e1000009.	1.5	25
104	A Tissue- and Temporal-Specific Autophagic Switch Controls Drosophila Pre-metamorphic Nutritional Checkpoints. Current Biology, 2019, 29, 2840-2851.e4.	1.8	25
105	Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinß in Drosophila melanogaster. Genetics, 2019, 213, 1447-1464.	1.2	25
106	Site-specific and illegitimate recombination in the oriV1 region of the F factor. Journal of Molecular Biology, 1986, 189, 85-102.	2.0	23
107	CTCF-dependent co-localization of canonical Smad signaling factors at architectural protein binding sites in <i>D. melanogaster</i> . Cell Cycle, 2015, 14, 2677-2687.	1.3	22
108	Anterograde Activin Signaling Regulates Postsynaptic Membrane Potential and GluRIIA/B Abundance at the Drosophila Neuromuscular Junction. PLoS ONE, 2014, 9, e107443.	1.1	22

#	Article	IF	CITATIONS
109	Nitric oxide directly regulates gene expression during <i>Drosophila</i> development: need some gas to drive into metamorphosis?: Figure 1 Genes and Development, 2011, 25, 1459-1463.	2.7	21
110	Mice lacking the chromodomain helicase DNA-binding 5 chromatin remodeler display autism-like characteristics. Translational Psychiatry, 2017, 7, e1152-e1152.	2.4	21
111	Proliferative stem cells maintain quiescence of their niche by secreting the Activin inhibitor Follistatin. Developmental Cell, 2021, 56, 2284-2294.e6.	3.1	21
112	The Role of Muscle in Insect Energy Homeostasis. Frontiers in Physiology, 2020, 11, 580687.	1.3	21
113	Coordination among multiple receptor tyrosine kinase signals controls Drosophila developmental timing and body size. Cell Reports, 2021, 36, 109644.	2.9	20
114	Diet and Energy-Sensing Inputs Affect TorC1-Mediated Axon Misrouting but Not TorC2-Directed Synapse Growth in a Drosophila Model of Tuberous Sclerosis. PLoS ONE, 2012, 7, e30722.	1.1	20
115	The expression of twisted gastrulation in postnatal mouse brain and functional implications. Neuroscience, 2010, 169, 920-931.	1.1	19
116	The Drosophila gap gene giant regulates ecdysone production through specification of the PTTH-producing neurons. Developmental Biology, 2010, 347, 271-278.	0.9	18
117	Isolation of Drosophila Activin and Follistatin cDNAs using novel MACH amplification protocols. Gene, 2002, 291, 85-93.	1.0	16
118	UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan. Scientific Reports, 2015, 5, 13176.	1.6	16
119	AKH Signaling in D. melanogaster Alters Larval Development in a Nutrient-Dependent Manner That Influences Adult Metabolism. Frontiers in Physiology, 2021, 12, 619219.	1.3	16
120	Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration. PLoS ONE, 2015, 10, e0139860.	1.1	15
121	Involvement of Twisted Gastrulation in T Cell-Independent Plasma Cell Production. Journal of Immunology, 2011, 186, 6860-6870.	0.4	14
122	The Drosophila TGF-beta/Activin-like ligands Dawdle and Myoglianin appear to modulate adult lifespan through regulation of 26S proteasome function in adult muscle. Biology Open, 2018, 7, .	0.6	14
123	Histone Carbonylation Is a Redox-Regulated Epigenomic Mark That Accumulates with Obesity and Aging. Antioxidants, 2020, 9, 1210.	2.2	14
124	Muscle-derived Myoglianin regulates Drosophila imaginal disc growth. ELife, 2020, 9, .	2.8	14
125	Timing is Everything: PTTH Mediated DHR4 Nucleocytoplasmic Trafficking Sets the Tempo of Drosophila Steroid Production. Frontiers in Endocrinology, 2011, 2, 108.	1.5	12
126	BMP Signaling in Drosophila Embryogenesis. Annals of the New York Academy of Sciences, 1996, 785, 80-97.	1.8	11

#	Article	IF	CITATIONS
127	Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster. Developmental Biology, 2017, 430, 166-176.	0.9	11
128	<i>Drosophila</i> Activin signaling promotes muscle growth through InR/dTORC1 dependent and independent processes. Development (Cambridge), 2021, 148, .	1.2	11
129	A frameshift mutation at the junction of an IS1 insertion within lacZ restores β-galactosidase activity via formation of an active lacZ-IS1 fusion protein. Journal of Molecular Biology, 1985, 181, 551-555.	2.0	10
130	Glycosylation of Twisted gastrulation is required for BMP binding and activity during craniofacial development. Frontiers in Physiology, 2011, 2, 59.	1.3	10
131	The NDNF-like factor Nord is a Hedgehog-induced extracellular BMP modulator that regulates Drosophila wing patterning and growth. ELife, 2022, 11, .	2.8	9
132	Developmental Maturation: Drosophila AstA Signaling Provides a Kiss to Grow Up. Current Biology, 2019, 29, R161-R164.	1.8	8
133	<i>Drosophila</i> MOV10 regulates the termination of midgut regeneration. Genetics, 2021, 218, .	1.2	7
134	Site-specific Recombination in the oriV1 Region of the F Factor. Cold Spring Harbor Symposia on Quantitative Biology, 1984, 49, 421-434.	2.0	7
135	The insulator protein CTCF regulates <i>Drosophila</i> steroidogenesis. Biology Open, 2015, 4, 852-857.	0.6	5
136	Lean on Me: Cell-Cell Interactions Release TGF-Î ² for Local Consumption Only. Cell, 2018, 174, 18-20.	13.5	3
137	Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo. Cell, 2005, 121, 493.	13.5	2
138	Apiology: Royal Secrets in the Queen's Fat Body. Current Biology, 2011, 21, R510-R512.	1.8	2
139	New resources for the Drosophila 4th chromosome: FRT101F enabled mitotic clones and <i>Bloom syndrome helicase</i> enabled meiotic recombination. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	2
140	A juxtamembrane basolateral targeting motif regulates signaling through a TGF-β pathway receptor in Drosophila. PLoS Biology, 2022, 20, e3001660.	2.6	2
141	You're Going to Need a Bigger (Glass Bottom) Boat. Science Signaling, 2012, 5, pe14.	1.6	1
142	Preface. Current Topics in Developmental Biology, 2013, 105, xiii-xv.	1.0	1
143	Adult Movement Defects Associated with a CORL Mutation in Drosophila Display Behavioral Plasticity. G3: Genes, Genomes, Genetics, 2020, 10, 1697-1706.	0.8	1

144 Tolloid (Drosophila). , 2004, , 617-620.

#	Article	IF	CITATIONS
145	Tolloid (Drosophila). , 2013, , 932-936.		0
146	Protease cleavage at an engineered tetra-basic motif in Drosophila PTTH accelerates developmental timing. MicroPublication Biology, 2019, 2019, .	0.1	0