Thijn R Brummelkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864024/publications.pdf

Version: 2024-02-01

84 papers 23,793 citations

23567 58 h-index 82 g-index

87 all docs

87 docs citations

87 times ranked

32183 citing authors

#	Article	IF	CITATIONS
1	Posttranslational modification of microtubules by the MATCAP detyrosinase. Science, 2022, 376, eabn6020.	12.6	33
2	E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	8
3	Quantitative genetic screening reveals a Ragulator-FLCN feedback loop that regulates the mTORC1 pathway. Science Signaling, 2020, 13, .	3.6	7
4	$\mbox{\ensuremath{\mbox{\scriptsize d}}}\mbox{\ensuremath{\mbox{\scriptsize d}}}\mbo$	12.4	15
5	Crystal structure of the tubulin tyrosine carboxypeptidase complex VASH1–SVBP. Nature Structural and Molecular Biology, 2019, 26, 567-570.	8.2	28
6	BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nature Communications, 2019, 10, 100.	12.8	91
7	Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPÎ \pm axis and a target for cancer immunotherapy. Nature Medicine, 2019, 25, 612-619.	30.7	156
8	SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing. PLoS ONE, 2019, 14, e0212053.	2.5	33
9	The Tubulin Detyrosination Cycle: Function and Enzymes. Trends in Cell Biology, 2019, 29, 80-92.	7.9	78
10	KREMEN1 Is a Host Entry Receptor for a Major Group of Enteroviruses. Cell Host and Microbe, 2018, 23, 636-643.e5.	11.0	69
11	Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature, 2018, 563, 559-563.	27.8	84
12	LZTR1 is a regulator of RAS ubiquitination and signaling. Science, 2018, 362, 1171-1177.	12.6	142
13	Nedd4-Binding Protein 1 and TNFAIP3-Interacting Protein 1 Control MHC- 1 Display in Neuroblastoma. Cancer Research, 2018, 78, 6621-6631.	0.9	42
14	Viral escape from endosomes and host detection at a glance. Journal of Cell Science, 2018, 131, .	2.0	107
15	Haploid genetic screens identify genetic vulnerabilities to microtubuleâ€targeting agents. Molecular Oncology, 2018, 12, 953-971.	4.6	12
16	PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature, 2017, 541, 412-416.	27.8	168
17	Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling. Nature, 2017, 546, 307-311.	27.8	115
18	Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host and Microbe, 2017, 22, 460-470.e5.	11.0	52

#	Article	IF	CITATIONS
19	Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2064-2074.	2.4	25
20	A haploid mammalian genetic screen identifies UBXD8 as a key determinant of sterol-stimulated degradation of HMGCR and cholesterol synthesis. Atherosclerosis, 2017, 263, e89.	0.8	1
21	Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature, 2017, 549, 106-110.	27.8	501
22	Vasohibins encode tubulin detyrosinating activity. Science, 2017, 358, 1453-1456.	12.6	185
23	NRP2 and CD63 Are Host Factors for Lujo Virus Cell Entry. Cell Host and Microbe, 2017, 22, 688-696.e5.	11.0	108
24	A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection. Journal of Virology, 2016, 90, 1414-1423.	3.4	103
25	Enterovirus D68 receptor requirements unveiled by haploid genetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1399-1404.	7.1	86
26	Subunit composition of <scp>VRAC</scp> channels determines substrate specificity and cellular resistance to <scp>P</scp> tâ€based antiâ€cancer drugs. EMBO Journal, 2015, 34, 2993-3008.	7.8	209
27	Emerging intracellular receptors for hemorrhagic fever viruses. Trends in Microbiology, 2015, 23, 392-400.	7.7	42
28	Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion. MBio, 2015, 6, e00801.	4.1	100
29	A generic strategy for CRISPR-Cas9-mediated gene tagging. Nature Communications, 2015, 6, 10237.	12.8	176
30	Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation. Chemistry and Biology, 2015, 22, 1643-1652.	6.0	67
31	A HUSH for transgene expression. Science, 2015, 348, 1433-1434.	12.6	7
32	Genome-Wide Identification and Characterization of Novel Factors Conferring Resistance to Topoisomerase II Poisons in Cancer. Cancer Research, 2015, 75, 4176-4187.	0.9	59
33	Gene essentiality and synthetic lethality in haploid human cells. Science, 2015, 350, 1092-1096.	12.6	773
34	Niemann-Pick C1 Is Essential for Ebolavirus Replication and Pathogenesis <i>In Vivo</i> . MBio, 2015, 6, e00565-15.	4.1	65
35	Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. ELife, 2015, 4, .	6.0	67
36	LRP1 is a receptor for <i>Clostridium perfringens</i> TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6431-6436.	7.1	82

#	Article	IF	CITATIONS
37	Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research, 2014, 24, 2059-2065.	5 . 5	238
38	The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nature Chemical Biology, 2014, 10, 768-773.	8.0	157
39	USP9X Downregulation Renders Breast Cancer Cells Resistant to Tamoxifen. Cancer Research, 2014, 74, 3810-3820.	0.9	38
40	Lassa virus entry requires a trigger-induced receptor switch. Science, 2014, 344, 1506-1510.	12.6	251
41	GPR107, a G-protein-coupled Receptor Essential for Intoxication by Pseudomonas aeruginosa Exotoxin A, Localizes to the Golgi and Is Cleaved by Furin. Journal of Biological Chemistry, 2014, 289, 24005-24018.	3.4	54
42	Inhibition of ATPIF1 Ameliorates Severe Mitochondrial Respiratory Chain Dysfunction in Mammalian Cells. Cell Reports, 2014, 7, 27-34.	6.4	62
43	Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science, 2014, 344, 1164-1168.	12.6	425
44	Cellular Reprogramming Erases Aberrant DNA Methylation and the Malignant Phenotype in Chronic Myeloid Leukemia. Blood, 2014, 124, 4524-4524.	1.4	0
45	A reversible gene trap collection empowers haploid genetics in human cells. Nature Methods, 2013, 10, 965-971.	19.0	90
46	A CREB3â \in ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nature Cell Biology, 2013, 15, 1473-1485.	10.3	135
47	MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nature Genetics, 2013, 45, 104-108.	21.4	204
48	Elucidating the molecular mechanism of action of cancer drugs in the second decade of the new millennium. Experimental Hematology, 2013, 41, S9.	0.4	0
49	Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry. Science, 2013, 340, 479-483.	12.6	262
50	Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L. Journal of Cell Science, 2013, 126, 3462-74.	2.0	149
51	Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants. Journal of Biological Chemistry, 2013, 288, 7481-7491.	3.4	66
52	A Reporter Screen in a Human Haploid Cell Line Identifies CYLD as a Constitutive Inhibitor of NF-κB. PLoS ONE, 2013, 8, e70339.	2.5	34
53	Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO Journal, 2012, 31, 1947-1960.	7.8	284
54	Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10059-10064.	7.1	46

#	Article	IF	CITATIONS
55	Yap1 Acts Downstream of α-Catenin to Control Epidermal Proliferation. Cell, 2011, 144, 782-795.	28.9	923
56	Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011, 477, 340-343.	27.8	1,127
57	Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nature Biotechnology, 2011, 29, 542-546.	17.5	207
58	Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin <i>Clostridium difficile</i> transferase (CDT). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16422-16427.	7.1	175
59	Identification of host cell factors required for intoxication through use of modified cholera toxin. Journal of Cell Biology, 2011, 195, 751-764.	5.2	61
60	A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11756-11765.	7.1	90
61	Generation of iPSCs from cultured human malignant cells. Blood, 2010, 115, 4039-4042.	1.4	206
62	A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G2/M DNA Damage Checkpoint. PLoS Biology, 2010, 8, e1000287.	5.6	201
63	Haploid Genetic Screens in Human Cells Identify Host Factors Used by Pathogens. Science, 2009, 326, 1231-1235.	12.6	452
64	Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 2008, 451, 1125-1129.	27.8	1,097
65	Suppression of the p53-Dependent Replicative Senescence Response by Lysophosphatidic Acid Signaling. Molecular Cancer Research, 2008, 6, 1452-1460.	3.4	24
66	Oncogenic BRAF Regulates Melanoma Proliferation through the Lineage Specific Factor MITF. PLoS ONE, 2008, 3, e2734.	2.5	226
67	YAP1 Increases Organ Size and Expands Undifferentiated Progenitor Cells. Current Biology, 2007, 17, 2054-2060.	3.9	1,091
68	An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nature Chemical Biology, 2006, 2, 202-206.	8.0	196
69	shRNA libraries and their use in cancer genetics. Nature Methods, 2006, 3, 701-706.	19.0	116
70	Functional Annotation of Deubiquitinating Enzymes Using RNA Interference. Methods in Enzymology, 2005, 398, 554-567.	1.0	7
71	The Deubiquitinating Enzyme USP1 Regulates the Fanconi Anemia Pathway. Molecular Cell, 2005, 17, 331-339.	9.7	510
72	A Genomic and Functional Inventory of Deubiquitinating Enzymes. Cell, 2005, 123, 773-786.	28.9	1,593

#	Article	IF	CITATIONS
73	Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition. Journal of Virology, 2004, 78, 2601-2605.	3.4	426
74	E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene, 2004, 23, 5138-5150.	5.9	93
75	A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428, 431-437.	27.8	955
76	Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO Journal, 2003, 22, 2934-2947.	7.8	269
77	Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature, 2003, 424, 797-801.	27.8	1,071
78	Specific inhibition of gene expression using a stably integrated, inducible smallâ€interferingâ€RNA vector. EMBO Reports, 2003, 4, 609-615.	4.5	489
79	New tools for functional mammalian cancer genetics. Nature Reviews Cancer, 2003, 3, 781-789.	28.4	259
80	TBX-3, the Gene Mutated in Ulnar-Mammary Syndrome, Is a Negative Regulator of p19 and Inhibits Senescence. Journal of Biological Chemistry, 2002, 277, 6567-6572.	3.4	140
81	A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF-p53 signaling. Genes and Development, 2002, 16, 681-686.	5.9	132
82	A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. Science, 2002, 296, 550-553.	12.6	4,098
83	Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2002, 2, 243-247.	16.8	1,067
84	A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nature Cell Biology, 2002, 4, 148-153.	10.3	98