
PaweÅ, Bednarek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3863094/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. Phytochemistry, 2021, 181, 112571.	2.9	22
2	Tryptophan-derived metabolites and BAK1 separately contribute to Arabidopsis postinvasive immunity against Alternaria brassicicola. Scientific Reports, 2021, 11, 1488.	3.3	12
3	Gene expression evolution in pattern-triggered immunity within <i>Arabidopsis thaliana</i> and across Brassicaceae species. Plant Cell, 2021, 33, 1863-1887.	6.6	27
4	UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance. Molecular Plant, 2021, 14, 544-546.	8.3	4
5	Retrograde sulfur flow from glucosinolates to cysteine in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	60
6	A Network of Phosphate Starvation and Immune-Related Signaling and Metabolic Pathways Controls the Interaction between <i>Arabidopsis thaliana</i> and the Beneficial Fungus <i>Colletotrichum tofieldiae</i> . Molecular Plant-Microbe Interactions, 2021, 34, 560-570.	2.6	21
7	Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
8	The role of <scp>CYP</scp> 71A12 monooxygenase in pathogenâ€triggered tryptophan metabolism and Arabidopsis immunity. New Phytologist, 2020, 225, 400-412.	7.3	51
9	Moonlighting Function of Phytochelatin Synthase1 in Extracellular Defense against Fungal Pathogens. Plant Physiology, 2020, 182, 1920-1932.	4.8	26
10	Identification of drought responsive proteins and related proteomic QTLs in barley. Journal of Experimental Botany, 2019, 70, 2823-2837.	4.8	28
11	YODA MAP3K kinase regulates plant immune responses conferring broadâ€spectrum disease resistance. New Phytologist, 2018, 218, 661-680.	7.3	54
12	Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism. Plant Physiology, 2018, 176, 538-551.	4.8	69
13	Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants. Frontiers in Plant Science, 2018, 9, 1639.	3.6	48
14	Chemical suppressors of <i>mlo-</i> mediated powdery mildew resistance. Bioscience Reports, 2017, 37, .	2.4	3
15	PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 204-220.	5.7	128
16	Dysfunction of Arabidopsis <scp>MACPF</scp> domain protein activates programmed cell death via tryptophan metabolism in <scp>MAMP</scp> â€ŧriggered immunity. Plant Journal, 2017, 89, 381-393.	5.7	34
17	Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant. Frontiers in Plant Science, 2017, 8, 1006.	3.6	45
18	The Function of Glucosinolates and Related Metabolites in Plant Innate Immunity. Advances in Botanical Research, 2016, , 171-198.	1.1	49

#	Article	IF	CITATIONS
19	Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance. Frontiers in Plant Science, 2016, 7, 1108.	3.6	126
20	Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. Molecular Plant, 2016, 9, 682-695.	8.3	149
21	Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist, 2015, 206, 948-964.	7.3	452
22	Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways. Plant Physiology, 2015, 168, 814-827.	4.8	71
23	ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Frontiers in Plant Science, 2014, 5, 73.	3.6	93
24	Recognition at the leaf surface. New Phytologist, 2014, 202, 1098-1100.	7.3	0
25	Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126, 2969-2982.	3.6	15
26	The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways Â. Plant Physiology, 2013, 161, 1172-1188.	4.8	77
27	Glutathione and tryptophan metabolism are required for <i>Arabidopsis</i> immunity during the hypersensitive response to hemibiotrophs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9589-9594.	7.1	121
28	Glutathione and tryptophan metabolites are key players in <i><i>Arabidopsisnonhost resistance against<i>Colletotrichum gloeosporioides</i>. Plant Signaling and Behavior, 2013, 8, e25603.</i></i>	2.4	0
29	Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi. Molecular Plant, 2012, 5, 98-114.	8.3	141
30	Chemical warfare or modulators of defence responses – the function of secondary metabolites in plant immunity. Current Opinion in Plant Biology, 2012, 15, 407-414.	7.1	176
31	Sulfurâ€Containing Secondary Metabolites from <i>Arabidopsis thaliana</i> and other Brassicaceae with Function in Plant Immunity. ChemBioChem, 2012, 13, 1846-1859.	2.6	71
32	<i>Arabidopsis ENHANCED DISEASE RESISTANCE 1</i> is required for pathogenâ€induced expression of plant defensins in nonhost resistance, and acts through interference of <i>MYC2</i> â€mediated repressor function. Plant Journal, 2011, 67, 980-992.	5.7	74
33	Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. New Phytologist, 2011, 192, 713-726.	7.3	100
34	Perturbation of <i>Arabidopsis</i> Amino Acid Metabolism Causes Incompatibility with the Adapted Biotrophic Pathogen <i>Hyaloperonospora arabidopsidis</i> . Plant Cell, 2011, 23, 2788-2803.	6.6	109
35	Metabolic Engineering in <i>Nicotiana benthamiana</i> Reveals Key Enzyme Functions in <i>Arabidopsis</i> Indole Glucosinolate Modification. Plant Cell, 2011, 23, 716-729.	6.6	178
36	Not a peripheral issue: secretion in plant–microbe interactions. Current Opinion in Plant Biology, 2010. 13. 378-387.	7.1	88

PaweÅ, Bednarek

#	Article	IF	CITATIONS
37	Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant Journal, 2010, 63, no-no.	5.7	191
38	Entry Mode–Dependent Function of an Indole Glucosinolate Pathway in Arabidopsis for Nonhost Resistance against Anthracnose Pathogens. Plant Cell, 2010, 22, 2429-2443.	6.6	128
39	Accumulation of Isochorismate-derived 2,3-Dihydroxybenzoic 3-O-β-d-Xyloside in Arabidopsis Resistance to Pathogens and Ageing of Leaves. Journal of Biological Chemistry, 2010, 285, 25654-25665.	3.4	82
40	Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis <i>mlo2</i> Mutant. Plant Physiology, 2010, 152, 1544-1561.	4.8	121
41	A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21896-21901.	7.1	110
42	Plant-Microbe Interactions: Chemical Diversity in Plant Defense. Science, 2009, 324, 746-748.	12.6	307
43	A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense. Science, 2009, 323, 101-106.	12.6	927
44	Secretory Pathways in Plant Immune Responses. Plant Physiology, 2008, 147, 1575-1583.	4.8	123
45	Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monooxygenase FMO1 and the Nudix Hydrolase NUDT7. Plant Cell, 2006, 18, 1038-1051.	6.6	455
46	Structural Complexity, Differential Response to Infection, and Tissue Specificity of Indolic and Phenylpropanoid Secondary Metabolism in Arabidopsis Roots. Plant Physiology, 2005, 138, 1058-1070.	4.8	179
47	The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiology, 2005, 138, 1083-1096.	4.8	676
48	Pre- and Postinvasion Defenses Both Contribute to Nonhost Resistance in Arabidopsis. Science, 2005, 310, 1180-1183.	12.6	753
49	Induction of 3?-O-?-d-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato. Planta, 2004, 218, 668-672.	3.2	11
50	Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 2004, 65, 691-699.	2.9	146
51	Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. Journal of Chemical Ecology, 2003, 29, 1127-1142.	1.8	41
52	Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14569-14576.	7.1	148
53	The complexity of oxidative cross-linking of phenylpropanoids — evidence from an in vitro model system. Functional Plant Biology, 2002, 29, 853.	2.1	4
54	Profiling changes in metabolism of isoflavonoids and their conjugates in Lupinus albus treated with biotic elicitor. Phytochemistry, 2001, 56, 77-85.	2.9	61

4

#	Article	IF	CITATIONS
55	Identification of flavonoid diglycosides in yellow lupin (Lupinus luteus l.) with mass spectrometric techniques. , 1999, 34, 486-495.		41

Role of Plant Secondary Metabolites at the Host-Pathogen Interface. , 0, , 220-260.