
PaweÅ, Bednarek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3863094/publications.pdf

Version: 2024-02-01

Ρλιμέδ Βεσναρέκ

#	Article	IF	CITATIONS
1	A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense. Science, 2009, 323, 101-106.	12.6	927
2	Pre- and Postinvasion Defenses Both Contribute to Nonhost Resistance in Arabidopsis. Science, 2005, 310, 1180-1183.	12.6	753
3	The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiology, 2005, 138, 1083-1096.	4.8	676
4	Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monooxygenase FMO1 and the Nudix Hydrolase NUDT7. Plant Cell, 2006, 18, 1038-1051.	6.6	455
5	Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist, 2015, 206, 948-964.	7.3	452
6	Plant-Microbe Interactions: Chemical Diversity in Plant Defense. Science, 2009, 324, 746-748.	12.6	307
7	Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant Journal, 2010, 63, no-no.	5.7	191
8	Structural Complexity, Differential Response to Infection, and Tissue Specificity of Indolic and Phenylpropanoid Secondary Metabolism in Arabidopsis Roots. Plant Physiology, 2005, 138, 1058-1070.	4.8	179
9	Metabolic Engineering in <i>Nicotiana benthamiana</i> Reveals Key Enzyme Functions in <i>Arabidopsis</i> Indole Glucosinolate Modification. Plant Cell, 2011, 23, 716-729.	6.6	178
10	Chemical warfare or modulators of defence responses – the function of secondary metabolites in plant immunity. Current Opinion in Plant Biology, 2012, 15, 407-414.	7.1	176
11	Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. Molecular Plant, 2016, 9, 682-695.	8.3	149
12	Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14569-14576.	7.1	148
13	Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 2004, 65, 691-699.	2.9	146
14	Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi. Molecular Plant, 2012, 5, 98-114.	8.3	141
15	Entry Mode–Dependent Function of an Indole Glucosinolate Pathway in Arabidopsis for Nonhost Resistance against Anthracnose Pathogens. Plant Cell, 2010, 22, 2429-2443.	6.6	128
16	PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 204-220.	5.7	128
17	Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance. Frontiers in Plant Science, 2016, 7, 1108.	3.6	126
18	Secretory Pathways in Plant Immune Responses. Plant Physiology, 2008, 147, 1575-1583.	4.8	123

PaweÅ, Bednarek

#	Article	IF	CITATIONS
19	Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis <i>mlo2</i> Mutant. Plant Physiology, 2010, 152, 1544-1561.	4.8	121
20	Glutathione and tryptophan metabolism are required for <i>Arabidopsis</i> immunity during the hypersensitive response to hemibiotrophs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9589-9594.	7.1	121
21	A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21896-21901.	7.1	110
22	Perturbation of <i>Arabidopsis</i> Amino Acid Metabolism Causes Incompatibility with the Adapted Biotrophic Pathogen <i>Hyaloperonospora arabidopsidis</i> . Plant Cell, 2011, 23, 2788-2803.	6.6	109
23	Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives. New Phytologist, 2011, 192, 713-726.	7.3	100
24	ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Frontiers in Plant Science, 2014, 5, 73.	3.6	93
25	Not a peripheral issue: secretion in plant–microbe interactions. Current Opinion in Plant Biology, 2010, 13, 378-387.	7.1	88
26	Accumulation of Isochorismate-derived 2,3-Dihydroxybenzoic 3-O-β-d-Xyloside in Arabidopsis Resistance to Pathogens and Ageing of Leaves. Journal of Biological Chemistry, 2010, 285, 25654-25665.	3.4	82
27	The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways Â. Plant Physiology, 2013, 161, 1172-1188.	4.8	77
28	<i>Arabidopsis ENHANCED DISEASE RESISTANCE 1</i> is required for pathogenâ€induced expression of plant defensins in nonhost resistance, and acts through interference of <i>MYC2</i> â€mediated repressor function. Plant Journal, 2011, 67, 980-992.	5.7	74
29	Sulfurâ€Containing Secondary Metabolites from <i>Arabidopsis thaliana</i> and other Brassicaceae with Function in Plant Immunity. ChemBioChem, 2012, 13, 1846-1859.	2.6	71
30	Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways. Plant Physiology, 2015, 168, 814-827.	4.8	71
31	Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism. Plant Physiology, 2018, 176, 538-551.	4.8	69
32	Profiling changes in metabolism of isoflavonoids and their conjugates in Lupinus albus treated with biotic elicitor. Phytochemistry, 2001, 56, 77-85.	2.9	61
33	Retrograde sulfur flow from glucosinolates to cysteine in <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2021, 118, .	7.1	60
34	YODA MAP3K kinase regulates plant immune responses conferring broadâ€ s pectrum disease resistance. New Phytologist, 2018, 218, 661-680.	7.3	54
35	The role of <scp>CYP</scp> 71A12 monooxygenase in pathogenâ€ŧriggered tryptophan metabolism and Arabidopsis immunity. New Phytologist, 2020, 225, 400-412.	7.3	51
36	The Function of Glucosinolates and Related Metabolites in Plant Innate Immunity. Advances in Botanical Research, 2016, , 171-198.	1.1	49

PaweÅ, Bednarek

#	Article	IF	CITATIONS
37	Glutathione S-Transferases in the Biosynthesis of Sulfur-Containing Secondary Metabolites in Brassicaceae Plants. Frontiers in Plant Science, 2018, 9, 1639.	3.6	48
38	Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant. Frontiers in Plant Science, 2017, 8, 1006.	3.6	45
39	Identification of flavonoid diglycosides in yellow lupin (Lupinus luteus l.) with mass spectrometric techniques. , 1999, 34, 486-495.		41
40	Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. Journal of Chemical Ecology, 2003, 29, 1127-1142.	1.8	41
41	Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in <i>Arabidopsis</i> roots. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
42	Dysfunction of Arabidopsis <scp>MACPF</scp> domain protein activates programmed cell death via tryptophan metabolism in <scp>MAMP</scp> â€ŧriggered immunity. Plant Journal, 2017, 89, 381-393.	5.7	34
43	Identification of drought responsive proteins and related proteomic QTLs in barley. Journal of Experimental Botany, 2019, 70, 2823-2837.	4.8	28
44	Gene expression evolution in pattern-triggered immunity within <i>Arabidopsis thaliana</i> and across Brassicaceae species. Plant Cell, 2021, 33, 1863-1887.	6.6	27
45	Moonlighting Function of Phytochelatin Synthase1 in Extracellular Defense against Fungal Pathogens. Plant Physiology, 2020, 182, 1920-1932.	4.8	26
46	Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. Phytochemistry, 2021, 181, 112571.	2.9	22
47	A Network of Phosphate Starvation and Immune-Related Signaling and Metabolic Pathways Controls the Interaction between <i>Arabidopsis thaliana</i> and the Beneficial Fungus <i>Colletotrichum tofieldiae</i> . Molecular Plant-Microbe Interactions, 2021, 34, 560-570.	2.6	21
48	Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126, 2969-2982.	3.6	15
49	Tryptophan-derived metabolites and BAK1 separately contribute to Arabidopsis postinvasive immunity against Alternaria brassicicola. Scientific Reports, 2021, 11, 1488.	3.3	12
50	Induction of 3?-O-?-d-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato. Planta, 2004, 218, 668-672.	3.2	11
51	Role of Plant Secondary Metabolites at the Host-Pathogen Interface. , 0, , 220-260.		4
52	UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance. Molecular Plant, 2021, 14, 544-546.	8.3	4
53	The complexity of oxidative cross-linking of phenylpropanoids — evidence from an in vitro model system. Functional Plant Biology, 2002, 29, 853.	2.1	4
54	Chemical suppressors of <i>mlo-</i> mediated powdery mildew resistance. Bioscience Reports, 2017, 37, .	2.4	3

#	Article	IF	CITATIONS
55	Glutathione and tryptophan metabolites are key players in <i><i>Arabidopsis</i></i> nonhost resistance against <i>Colletotrichum gloeosporioides</i> . Plant Signaling and Behavior, 2013, 8, e25603.	2.4	Ο

Recognition at the leaf surface. New Phytologist, 2014, 202, 1098-1100.

7.3 0