
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3861423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural Network-Based Adaptive Antiswing Control of an Underactuated Ship-Mounted Crane With Roll Motions and Input Dead Zones. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 901-914.	11.3	208
2	Amplitude-Saturated Nonlinear Output Feedback Antiswing Control for Underactuated Cranes With Double-Pendulum Cargo Dynamics. IEEE Transactions on Industrial Electronics, 2017, 64, 2135-2146.	7.9	185
3	A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes. IEEE/ASME Transactions on Mechatronics, 2012, 17, 166-173.	5.8	179
4	Homography-Based Visual Servo Regulation of Mobile Robots. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35, 1041-1050.	5.0	174
5	New Energy Analytical Results for the Regulation of Underactuated Overhead Cranes: An End-Effector Motion-Based Approach. IEEE Transactions on Industrial Electronics, 2012, 59, 4723-4734.	7.9	173
6	Transportation Control of Double-Pendulum Cranes With a Nonlinear Quasi-PID Scheme: Design and Experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1408-1418.	9.3	170
7	Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs. Automatica, 2013, 49, 1318-1325.	5.0	150
8	Nonlinear Antiswing Control for Crane Systems With Double-Pendulum Swing Effects and Uncertain Parameters: Design and Experiments. IEEE Transactions on Automation Science and Engineering, 2018, 15, 1413-1422.	5.2	145
9	Dynamics Analysis and Nonlinear Control of an Offshore Boom Crane. IEEE Transactions on Industrial Electronics, 2014, 61, 414-427.	7.9	136
10	Nonlinear Hierarchical Control for Unmanned Quadrotor Transportation Systems. IEEE Transactions on Industrial Electronics, 2018, 65, 3395-3405.	7.9	122
11	Adaptive Control for Pneumatic Artificial Muscle Systems With Parametric Uncertainties and Unidirectional Input Constraints. IEEE Transactions on Industrial Informatics, 2020, 16, 969-979.	11.3	122
12	Nonlinear Stabilizing Control for Ship-Mounted Cranes With Ship Roll and Heave Movements: Design, Analysis, and Experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1781-1793.	9.3	119
13	Adaptive Active Visual Servoing of Nonholonomic Mobile Robots. IEEE Transactions on Industrial Electronics, 2012, 59, 486-497.	7.9	118
14	Adaptive Nonlinear Crane Control With Load Hoisting/Lowering and Unknown Parameters: Design and Experiments. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2107-2119.	5.8	116
15	An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments. Mechanical Systems and Signal Processing, 2018, 102, 87-101.	8.0	115
16	Adaptive Fuzzy Control for a Class of MIMO Underactuated Systems With Plant Uncertainties and Actuator Deadzones: Design and Experiments. IEEE Transactions on Cybernetics, 2022, 52, 8213-8226.	9.5	113
17	Motion-Estimation-Based Visual Servoing of Nonholonomic Mobile Robots. , 2011, 27, 1167-1175.		109
18	Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints. IEEE Transactions on Industrial Electronics, 2014, 61, 6915-6925.	7.9	107

#	Article	IF	CITATIONS
19	Continuous Sliding Mode Control Strategy for a Class of Nonlinear Underactuated Systems. IEEE Transactions on Automatic Control, 2018, 63, 3471-3478.	5.7	106
20	A Swing Constraint Guaranteed MPC Algorithm for Underactuated Overhead Cranes. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2543-2555.	5.8	103
21	A New Antiswing Control Method for Underactuated Cranes With Unmodeled Uncertainties: Theoretical Design and Hardware Experiments. IEEE Transactions on Industrial Electronics, 2015, 62, 453-465.	7.9	100
22	Slew/Translation Positioning and Swing Suppression for 4-DOF Tower Cranes With Parametric Uncertainties: Design and Hardware Experimentation. IEEE Transactions on Industrial Electronics, 2016, 63, 6407-6418.	7.9	98
23	Adaptive Anti-Swing and Positioning Control for 4-DOF Rotary Cranes Subject to Uncertain/Unknown Parameters With Hardware Experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1309-1321.	9.3	88
24	Visual Servoing of Nonholonomic Mobile Robots With Uncalibrated Camera-to-Robot Parameters. IEEE Transactions on Industrial Electronics, 2017, 64, 390-400.	7.9	83
25	Nonlinear tracking control of underactuated cranes with load transferring and lowering: Theory and experimentation. Automatica, 2014, 50, 2350-2357.	5.0	82
26	An adaptive tracking control method with swing suppression for 4-DOF tower crane systems. Mechanical Systems and Signal Processing, 2019, 123, 426-442.	8.0	78
27	Optimal trajectory planning and tracking control method for overhead cranes. IET Control Theory and Applications, 2016, 10, 692-699.	2.1	75
28	Nonlinear Motion Control of Complicated Dual Rotary Crane Systems Without Velocity Feedback: Design, Analysis, and Hardware Experiments. IEEE Transactions on Automation Science and Engineering, 2020, 17, 1017-1029.	5.2	74
29	Nonlinear Continuous Global Stabilization Control for Underactuated RTAC Systems: Design, Analysis, and Experimentation. IEEE/ASME Transactions on Mechatronics, 2017, 22, 1104-1115.	5.8	73
30	Observer-Based Nonlinear Control for Tower Cranes Suffering From Uncertain Friction and Actuator Constraints With Experimental Verification. IEEE Transactions on Industrial Electronics, 2021, 68, 6192-6204.	7.9	71
31	Visual servoing of mobile robots for posture stabilization: from theory to experiments. International Journal of Robust and Nonlinear Control, 2015, 25, 1-15.	3.7	68
32	Antiswing Cargo Transportation of Underactuated Tower Crane Systems by a Nonlinear Controller Embedded With an Integral Term. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1387-1398.	5.2	68
33	Adaptive Output Feedback Control for 5-DOF Varying-Cable-Length Tower Cranes With Cargo Mass Estimation. IEEE Transactions on Industrial Informatics, 2021, 17, 2453-2464.	11.3	66
34	A Novel Energy-Coupling-Based Hierarchical Control Approach for Unmanned Quadrotor Transportation Systems. IEEE/ASME Transactions on Mechatronics, 2019, 24, 248-259.	5.8	65
35	Complete and Time-Optimal Path-Constrained Trajectory Planning With Torque and Velocity Constraints: Theory and Applications. IEEE/ASME Transactions on Mechatronics, 2018, 23, 735-746.	5.8	61
36	Neuroadaptive Control for Complicated Underactuated Systems With Simultaneous Output and Velocity Constraints Exerted on Both Actuated and Unactuated States. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4488-4498.	11.3	61

#	Article	IF	CITATIONS
37	Nonlinear Antiswing Control of Offshore Cranes With Unknown Parameters and Persistent Ship-Induced Perturbations: Theoretical Design and Hardware Experiments. IEEE Transactions on Industrial Electronics, 2018, 65, 2629-2641.	7.9	57
38	Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics, 2017, 47, 116-125.	3.3	56
39	Acceleration-Level Pseudo-Dynamic Visual Servoing of Mobile Robots With Backstepping and Dynamic Surface Control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 2071-2081.	9.3	56
40	Adaptive repetitive learning control for an offshore boom crane. Automatica, 2017, 82, 21-28.	5.0	55
41	Antiswing Control of Offshore Boom Cranes With Ship Roll Disturbances. IEEE Transactions on Control Systems Technology, 2018, 26, 740-747.	5.2	55
42	Dynamics analysis and time-optimal motion planning for unmanned quadrotor transportation systems. Mechatronics, 2018, 50, 16-29.	3.3	54
43	Nonlinear Motion Control of Underactuated Three-Dimensional Boom Cranes With Hardware Experiments. IEEE Transactions on Industrial Informatics, 2018, 14, 887-897.	11.3	53
44	Multilevel Humanlike Motion Planning for Mobile Robots in Complex Indoor Environments. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1244-1258.	5.2	53
45	Visual Servo Regulation of Wheeled Mobile Robots With Simultaneous Depth Identification. IEEE Transactions on Industrial Electronics, 2018, 65, 460-469.	7.9	52
46	Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances. Mechanical Systems and Signal Processing, 2019, 114, 556-570.	8.0	51
47	New Adaptive Control Methods for \$n\$-Link Robot Manipulators With Online Gravity Compensation: Design and Experiments. IEEE Transactions on Industrial Electronics, 2022, 69, 539-548.	7.9	47
48	Model-Free Unified Tracking and Regulation Visual Servoing of Wheeled Mobile Robots. IEEE Transactions on Control Systems Technology, 2016, 24, 1328-1339.	5.2	44
49	A Novel Geometric Hierarchical Approach for Dynamic Visual Servoing of Quadrotors. IEEE Transactions on Industrial Electronics, 2020, 67, 3840-3849.	7.9	44
50	Adaptive Neural Network Output Feedback Control of Uncertain Underactuated Systems With Actuated and Unactuated State Constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7027-7043.	9.3	44
51	Switching Logic-Based Nonlinear Feedback Control of Offshore Ship-Mounted Tower Cranes: A Disturbance Observer-Based Approach. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1125-1136.	5.2	43
52	Modeling and nonlinear coordination control for an underactuated dual overhead crane system. Automatica, 2018, 91, 244-255.	5.0	41
53	Nonlinear Stable Transportation Control for Double-Pendulum Shipboard Cranes With Ship-Motion-Induced Disturbances. IEEE Transactions on Industrial Electronics, 2019, 66, 9467-9479.	7.9	41
54	3-D Model-Based Multi-Camera Deployment: A Recursive Convex Optimization Approach. IEEE/ASME Transactions on Mechatronics, 2015, 20, 3157-3169.	5.8	40

#	Article	IF	CITATIONS
55	Enhanced-coupling adaptive control for double-pendulum overhead cranes with payload hoisting and lowering. Automatica, 2019, 101, 241-251.	5.0	40
56	Behavioural effect of low-dose BPA on male zebrafish: Tuning of male mating competition and female mating preference during courtship process. Chemosphere, 2017, 169, 40-52.	8.2	37
57	Energy-Based Motion Control for Pneumatic Artificial Muscle Actuated Robots With Experiments. IEEE Transactions on Industrial Electronics, 2022, 69, 7295-7306.	7.9	36
58	Visual Servo Regulation of Wheeled Mobile Robots With an Uncalibrated Onboard Camera. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2330-2342.	5.8	35
59	Autonomous Indoor Exploration Via Polygon Map Construction and Graph-Based SLAM Using Directional Endpoint Features. IEEE Transactions on Automation Science and Engineering, 2019, 16, 1531-1542.	5.2	35
60	Nonlinear Stabilization Control of Multiple-RTAC Systems Subject to Amplitude-Restricted Actuating Torques Using Only Angular Position Feedback. IEEE Transactions on Industrial Electronics, 2017, 64, 3084-3094.	7.9	34
61	Essential Properties of Numerical Integration for Time-Optimal Path-Constrained Trajectory Planning. IEEE Robotics and Automation Letters, 2017, 2, 888-895.	5.1	32
62	Motion Trajectory-Based Transportation Control for 3-D Boom Cranes: Analysis, Design, and Experiments. IEEE Transactions on Industrial Electronics, 2019, 66, 3636-3646.	7.9	32
63	A Novel Robust Observer-Based Nonlinear Trajectory Tracking Control Strategy for Quadrotors. IEEE Transactions on Control Systems Technology, 2021, 29, 1952-1963.	5.2	32
64	Adaptive Nonlinear Hierarchical Control for a Rotorcraft Transporting a Cable-Suspended Payload. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4171-4182.	9.3	32
65	Adaptive Neural Network-Based Tracking Control of Underactuated Offshore Ship-to-Ship Crane Systems Subject to Unknown Wave Motions Disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3626-3637.	9.3	30
66	The effects of fluorene-9-bisphenol on female zebrafish (Danio rerio) reproductive and exploratory behaviors. Chemosphere, 2019, 228, 398-411.	8.2	29
67	A Visual Distance Approach for Multicamera Deployment With Coverage Optimization. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1007-1018.	5.8	28
68	Real-Time Acceleration-Continuous Path-Constrained Trajectory Planning With Built-In Tradeoff Between Cruise and Time-Optimal Motions. IEEE Transactions on Automation Science and Engineering, 2020, 17, 1911-1924.	5.2	28
69	Dynamic Image-Based Output Feedback Control for Visual Servoing of Multirotors. IEEE Transactions on Industrial Informatics, 2020, 16, 7624-7636.	11.3	28
70	Nonlinear coordination control of offshore boom cranes with bounded control inputs. International Journal of Robust and Nonlinear Control, 2019, 29, 1165-1181.	3.7	27
71	Dynamic Feedback Antiswing Control of Shipboard Cranes Without Velocity Measurement: Theory and Hardware Experiments. IEEE Transactions on Industrial Informatics, 2019, 15, 2879-2891.	11.3	27
72	Nonlinear Sliding Mode Tracking Control of Underactuated Tower Cranes. International Journal of Control, Automation and Systems, 2021, 19, 1065-1077.	2.7	27

#	Article	IF	CITATIONS
73	An Increased Nonlinear Coupling Motion Controller for Underactuated Multi-TORA Systems: Theoretical Design and Hardware Experimentation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1186-1193.	9.3	26
74	Visual Servoing of Wheeled Mobile Robots Without Desired Images. IEEE Transactions on Cybernetics, 2019, 49, 2835-2844.	9.5	25
75	Fuzzy-Sliding Mode Control for Humanoid Arm Robots Actuated by Pneumatic Artificial Muscles With Unidirectional Inputs, Saturations, and Dead Zones. IEEE Transactions on Industrial Informatics, 2022, 18, 3011-3021.	11.3	25
76	A line segment extraction algorithm using laser data based on seeded region growing. International Journal of Advanced Robotic Systems, 2018, 15, 172988141875524.	2.1	23
77	Attitude-Constrained Time-Optimal Trajectory Planning for Rotorcrafts: Theory and Application to Visual Servoing. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1912-1921.	5.8	23
78	A neuroadaptive control method for pneumatic artificial muscle systems with hardware experiments. Mechanical Systems and Signal Processing, 2021, 146, 106976.	8.0	23
79	Adaptive Fuzzy Control for Uncertain Mechatronic Systems With State Estimation and Input Nonlinearities. IEEE Transactions on Industrial Informatics, 2022, 18, 1770-1780.	11.3	23
80	Adaptive Output-Feedback Control for Dual Overhead Crane System With Enhanced Anti-Swing Performance. IEEE Transactions on Control Systems Technology, 2020, 28, 2235-2248.	5.2	22
81	A Path-Integral-Based Reinforcement Learning Algorithm for Path Following of an Autoassembly Mobile Robot. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 4487-4499.	11.3	21
82	A Novel Serpentine Gait Generation Method for Snakelike Robots Based on Geometry Mechanics. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1249-1258.	5.8	19
83	Development of functional biointerfaces by surface modification of polydimethylsiloxane with bioactive chlorogenic acid. Colloids and Surfaces B: Biointerfaces, 2014, 116, 700-706.	5.0	18
84	Virtual-Goal-Guided RRT for Visual Servoing of Mobile Robots With FOV Constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2073-2083.	9.3	18
85	Nonlinear time-optimal trajectory planning for varying-rope-length overhead cranes. Assembly Automation, 2018, 38, 587-594.	1.7	17
86	An Energy-based Nonlinear Coupling Control for Offshore Ship-mounted Cranes. International Journal of Automation and Computing, 2018, 15, 570-581.	4.5	17
87	Guided Motion Planning for Snake-like Robots Based on Geometry Mechanics and HJB Equation. IEEE Transactions on Industrial Electronics, 2019, 66, 7120-7130.	7.9	17
88	Gated recurrent unit based frequency-dependent hysteresis modeling and end-to-end compensation. Mechanical Systems and Signal Processing, 2020, 136, 106501.	8.0	16
89	Nonlinear Control for Aerial Transportation Systems With Double-Pendulum Swing Effects. IEEE Transactions on Industrial Electronics, 2021, 68, 6020-6030.	7.9	16
90	A Nonlinear Control Approach for Aerial Transportation Systems With Improved Antiswing and Positioning Performance. IEEE Transactions on Automation Science and Engineering, 2021, 18, 2104-2114.	5.2	16

#	Article	IF	CITATIONS
91	E ³ MoP: Efficient Motion Planning Based on Heuristic-Guided Motion Primitives Pruning and Path Optimization With Sparse-Banded Structure. IEEE Transactions on Automation Science and Engineering, 2022, 19, 2762-2775.	5.2	16
92	Visual tracking of mobile robots with both velocity and acceleration saturation constraints. Mechanical Systems and Signal Processing, 2021, 150, 107274.	8.0	15
93	Adaptive Coupling Anti-Swing Tracking Control of Underactuated Dual Boom Crane Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4697-4709.	9.3	15
94	MRPB 1.0: A Unified Benchmark for the Evaluation of Mobile Robot Local Planning Approaches. , 2021, , .		15
95	Observer-based adaptive fuzzy control of underactuated offshore cranes for cargo stabilization with respect to ship decks. Mechanism and Machine Theory, 2022, 175, 104927.	4.5	15
96	An energy exchanging and dropping-based model-free output feedback crane control method. Mechatronics, 2013, 23, 549-558.	3.3	14
97	Precise Cell Injection and Extraction Control Based on Microscopic Visual Feedback. IEEE/ASME Transactions on Mechatronics, 2020, 25, 872-881.	5.8	14
98	Auto-tuning nonlinear PID-type controller for rotorcraft-based aggressive transportation. Mechanical Systems and Signal Processing, 2020, 145, 106858.	8.0	14
99	Nonlinear control for underactuated multi-rope cranes: Modeling, theoretical design and hardware experiments. Control Engineering Practice, 2018, 76, 123-132.	5.5	11
100	New Adaptive Dynamic Output Feedback Control of Double-Pendulum Ship-Mounted Cranes With Accurate Gravitational Compensation and Constrained Inputs. IEEE Transactions on Industrial Electronics, 2022, 69, 9196-9205.	7.9	11
101	Nonlinear antiswing control for offshore boom cranes subject to ship roll and heave disturbances. Automation in Construction, 2021, 131, 103843.	9.8	11
102	Neural network-based adaptive command filtering control for pneumatic artificial muscle robots with input uncertainties. Control Engineering Practice, 2022, 118, 104960.	5.5	11
103	A learning strategy based partial feedback linearization control method for an offshore boom crane. , 2015, , .		10
104	Super-twisting-based antiswing control for underactuated double pendulum cranes. , 2015, , .		10
105	A New Nonlinear Control Strategy Embedded With Reinforcement Learning for a Multirotor Transporting a Suspended Payload. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1174-1184.	5.8	10
106	CAE-RLSM: Consistent and Efficient Redundant Line Segment Merging for Online Feature Map Building. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 4222-4237.	4.7	9
107	Distributed Optimization of Visual Sensor Networks for Coverage of a Large-Scale 3-D Scene. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2777-2788.	5.8	9
108	Modeling and nonlinear energy-based anti-swing control of underactuated dual ship-mounted crane systems. Nonlinear Dynamics, 2021, 106, 323-338.	5.2	9

#	Article	IF	CITATIONS
109	Programming-Based Optimal Learning Sliding Mode Control for Cooperative Dual Ship-Mounted Cranes Against Unmatched External Disturbances. IEEE Transactions on Automation Science and Engineering, 2023, 20, 969-980.	5.2	9
110	An Adaptive Fuzzy Control Method of Single-Link Flexible Manipulators with Input Dead-Zones. International Journal of Fuzzy Systems, 2020, 22, 2521-2533.	4.0	8
111	Online Antiswing Trajectory Planning for a Practical Rubber Tire Container Gantry Crane. IEEE Transactions on Industrial Electronics, 2022, 69, 6193-6203.	7.9	8
112	Fast Active Aerial Exploration for Traversable Path Finding of Ground Robots in Unknown Environments. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-13.	4.7	8
113	Quaternion-Based Hybrid Attitude Control for an Under-Actuated Flapping Wing Aerial Vehicle. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2341-2352.	5.8	7
114	Bridging the Gap Between Visual Servoing and Visual SLAM: A Novel Integrated Interactive Framework. IEEE Transactions on Automation Science and Engineering, 2022, 19, 2245-2255.	5.2	7
115	Gain-adapting coupling control for a class of underactuated mechanical systems. Automatica, 2021, 125, 109461.	5.0	7
116	Collaborative Antiswing Hoisting Control for Dual Rotary Cranes with Motion Constraints. IEEE Transactions on Industrial Informatics, 2021, , 1-1.	11.3	7
117	Adaptive positioning and swing suppression control of underactuated cranes exhibiting double-pendulum dynamics: Theory and experimentation. , 2016, , .		6
118	Tree-Search-Based Any-Time Time-Optimal Path-Constrained Trajectory Planning With Inadmissible Island Constraints. IEEE Access, 2019, 7, 1040-1051.	4.2	6
119	Learning-Based Error-Constrained Motion Control for Pneumatic Artificial Muscle-Actuated Exoskeleton Robots With Hardware Experiments. IEEE Transactions on Automation Science and Engineering, 2022, 19, 3700-3711.	5.2	6
120	Trajectory planning of omnidirectional mobile robots with active casters: Multi-motor coordination and singularity avoidance. , 2015, , .		5
121	Geometric adaptive dynamic visual servoing of a quadrotor UAV. , 2016, , .		5
122	Dynamics analysis of an offshore ship-mounted crane subject to sea wave disturbances. , 2016, , .		5
123	An Effective Correction Method for AFM Image Distortion due to Hysteresis and Thermal Drift. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	5
124	An Intelligent AFM Scanning Strategy Based on Autonomous Exploration. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1750-1760.	5.8	5
125	Neural network-based adaptive sliding mode control for underactuated dual overhead cranes suffering from matched and unmatched disturbances. Autonomous Intelligent Systems, 2022, 2, .	3.1	5
126	Online trajectory planning for three-dimensional offshore boom cranes. Automation in Construction, 2022, 140, 104372.	9.8	5

#	Article	IF	CITATIONS
127	Differential Flatness-Based Robust Control of Self-balanced Robots. IFAC-PapersOnLine, 2018, 51, 949-954.	0.9	4
128	Trajectory planning-based control of underactuated wheeled inverted pendulum robots. Science China Information Sciences, 2019, 62, 1.	4.3	4
129	An Optimized Scanning-Based AFM Fast Imaging Method. IEEE/ASME Transactions on Mechatronics, 2020, 25, 535-546.	5.8	4
130	A Time-Optimal Trajectory Planning Strategy for an Aircraft With a Suspended Payload via Optimization and Learning Approaches. IEEE Transactions on Control Systems Technology, 2022, 30, 2333-2343.	5.2	4
131	Neural Network-Based Hybrid Three-Dimensional Position Control for a Flapping Wing Aerial Vehicle. IEEE Transactions on Cybernetics, 2023, 53, 6095-6108.	9.5	4
132	Composite iterative learning controller design for gradually varying references with applications in an AFM system. Journal of Central South University, 2014, 21, 180-189.	3.0	3
133	A Robust Control Approach for Double-Pendulum Overhead Cranes With Unknown Disturbances. , 2019, , .		3
134	A Novel Nonlinear Control Scheme for Double-Pendulum Quadrotor Transportation Systems. , 2019, , .		3
135	Unmanned Quadrotor Transportation Systems with Payload Hoisting/Lowering: Dynamics Modeling and Controller Design. , 2020, , .		3
136	Visual Servoing of Mobile Robots with Input Saturation at Kinematic Level. Lecture Notes in Computer Science, 2017, , 432-442.	1.3	3
137	Neural Network Based Adaptive Feedback Control for Tower Cranes. , 2018, , .		2
138	Dynamics Modeling and Analysis for Cooperative Dual Rotary Crane Systems. , 2018, , .		2
139	Any Curve Path Following of Snake-like Robots. , 2019, , .		2
140	Multi-objective Trajectory Planning with State Constraints for 5-DOF Underactuated Tower Crane Systems. Lecture Notes in Electrical Engineering, 2022, , 710-728.	0.4	2
141	A Practical Visual Positioning Method for Industrial Overhead Crane Systems. Lecture Notes in Computer Science, 2017, , 16-25.	1.3	2
142	ESSENTIAL-MATRIX-BASED VISUAL SERVOING OF MOBILE ROBOTS WITHOUT SHORT BASELINE DEGENERATION. International Journal of Robotics and Automation, 2015, 30, .	0.1	2
143	A varying set-point AFM scanning method for simultaneous measurement of sample topography and elasticity. , 2017, , .		1
144	Global homography calibration for monocular vision-based pose measurement of mobile robots. International Journal of Intelligent Robotics and Applications, 2017, 1, 372-382.	2.8	1

#	Article	IF	CITATIONS
145	Point-to-point motion control for flexible crane systems working in the deep sea. Measurement and Control, 2020, 53, 1041-1048.	1.8	1
146	A Novel Topography and Elasticity Synchronous Measure Approach With an AFM. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 8401-8410.	4.7	1
147	A Simple Antiswing Input Shaper for Dual Boom Cranes. , 2020, , .		1
148	Nonlinear Output Feedback Control of Three-Dimensional Underactuated Shipboard Rotary Cranes. Lecture Notes in Electrical Engineering, 2022, , 43-56.	0.4	1
149	Payload Lifting Control of Underactuated Boom Cranes Using Sliding Mode Theory. , 2018, , .		0
150	A Continuous Robust Attitude Control Approach for Quadrotors Subject to Disturbance. , 2019, , .		0
151	Error Constrained Hybrid Force/Position Control of a Grinding Robot. , 2021, , .		0
152	Dynamics Analysis of Underactuated Cherrypicker Systems with Friction. Lecture Notes in Computer Science, 2017, , 345-354.	1.3	0
153	A novel disturbance observer based sliding mode combined repetitive learning control strategy for large range nanopositioning system. , 2021, , .		0
154	A Novel Framework for Autonomous Landing of the Quadrotor on the Moving Platform by Onboard Vision Sensors. , 2021, , .		0
155	Disturbance Compensation-Based Nonlinear Control for Pneumatic Artificial Muscle Systems With Hardware Experiments. Journal of Physics: Conference Series, 2022, 2213, 012033.	0.4	0
156	Nonlinear Control for Dual-Rope Aerial Transportation System by Tilt-Rotor. , 2021, , .		0
157	Amplitude-Limited Optimal Control for Robot Manipulators Actuated by Pneumatic Artificial Muscles. , 2022, , .		0