
Clotilde Lagier-Tourenne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3860246/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nature Communications, 2021, 12, 3028.	12.8	28
2	Wild-type FUS corrects ALS-like disease induced by cytoplasmic mutant FUS through autoregulation. Molecular Neurodegeneration, 2021, 16, 61.	10.8	9
3	Loss of TDP-43 in male germ cells causes meiotic failure and impairs fertility in mice. Journal of Biological Chemistry, 2021, 297, 101231.	3.4	8
4	Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nature Neuroscience, 2020, 23, 615-624.	14.8	157
5	Phenotypic Suppression of ALS/FTD-Associated Neurodegeneration Highlights Mechanisms of Dysfunction. Journal of Neuroscience, 2019, 39, 8217-8224.	3.6	13
6	FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nature Neuroscience, 2019, 22, 1793-1805.	14.8	81
7	Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron, 2019, 102, 294-320.	8.1	176
8	Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nature Neuroscience, 2019, 22, 180-190.	14.8	345
9	Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. ELife, 2019, 8, .	6.0	65
10	Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell, 2018, 173, 677-692.e20.	28.9	376
11	Nuclear pores: the gate to neurodegeneration. Nature Neuroscience, 2018, 21, 156-158.	14.8	34
12	CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nature Communications, 2018, 9, 152.	12.8	123
13	Taking on the Elephant in the Tissue Culture Room: iPSC Modeling for Sporadic ALS. Cell Stem Cell, 2018, 23, 466-467.	11.1	4
14	Animal models of neurodegenerative diseases. Nature Neuroscience, 2018, 21, 1370-1379.	14.8	358
15	ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron, 2018, 100, 816-830.e7.	8.1	185
16	Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathologica, 2017, 133, 887-906.	7.7	111
17	Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear Integrity and Nucleocytoplasmic Transport. Neuron, 2017, 94, 48-57.e4.	8.1	190
18	Novel autosomal dominant <i><scp>TNNT</scp>1</i> mutation causing nemaline myopathy. Molecular Genetics & Genomic Medicine, 2017, 5, 678-691.	1.2	26

#	Article	IF	CITATIONS
19	Toxic gain of function from mutant <scp>FUS</scp> protein is crucial to trigger cell autonomous motor neuron loss. EMBO Journal, 2016, 35, 1077-1097.	7.8	187
20	Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron, 2016, 90, 535-550.	8.1	437
21	C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neuroscience, 2016, 19, 668-677.	14.8	268
22	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	12.6	823
23	ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nature Communications, 2015, 6, 6171.	12.8	205
24	RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends in Neurosciences, 2015, 38, 226-236.	8.6	97
25	Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathologica, 2015, 130, 863-876.	7.7	104
26	Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathologica, 2015, 130, 559-573.	7.7	89
27	Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6993-7002.	7.1	165
28	Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 829-832.	7.1	296
29	Exploring the Effect of Sequence Length and Composition on Allele-Selective Inhibition of Human Huntingtin Expression by Single-Stranded Silencing RNAs. Nucleic Acid Therapeutics, 2014, 24, 199-209.	3.6	21
30	Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nature Neuroscience, 2014, 17, 513-521.	14.8	274
31	CFTR p.Arg117His associated with CBAVD and other CFTR-related disorders. Journal of Medical Genetics, 2013, 50, 220-227.	3.2	31
32	ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E736-45.	7.1	370
33	Targeted degradation of sense and antisense <i>C9orf72</i> RNA foci as therapy for ALS and frontotemporal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4530-9.	7.1	508
34	Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nature Neuroscience, 2012, 15, 1488-1497.	14.8	628
35	Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Research, 2012, 1462, 3-15.	2.2	150
36	Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neuroscience, 2011, 14, 459-468.	14.8	1,050

#	Article	IF	CITATIONS
37	Molecular diagnosis of known recessive ataxias by homozygosity mapping with SNP arrays. Journal of Neurology, 2011, 258, 56-67.	3.6	14
38	An expansion in ALS genetics. Nature, 2010, 466, 1052-1053.	27.8	26
39	Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Human Molecular Genetics, 2010, 19, 1399-1412.	2.9	139
40	Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ ₁₀ deficiency. FASEB Journal, 2010, 24, 3733-3743.	0.5	142
41	Rundataxin, a novel protein with RUN and diacylglycerol binding domains, is mutant in a new recessive ataxia. Brain, 2010, 133, 2439-2447.	7.6	46
42	ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13318-13323.	7.1	391
43	TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Human Molecular Genetics, 2010, 19, R46-R64.	2.9	840
44	SPG11 spastic paraplegia. Journal of Neurology, 2009, 256, 104-108.	3.6	96
45	Use of SNP array analysis to identify a novel TRIM32 mutation in limb-girdle muscular dystrophy type 2H. Neuromuscular Disorders, 2009, 19, 255-260.	0.6	29
46	Rethinking ALS: The FUS about TDP-43. Cell, 2009, 136, 1001-1004.	28.9	516
47	ADCK3, an Ancestral Kinase, Is Mutated in a Form of Recessive Ataxia Associated with Coenzyme Q10 Deficiency. American Journal of Human Genetics, 2008, 82, 661-672.	6.2	290
48	A new form of childhood onset, autosomal recessive spinocerebellar ataxia and epilepsy is localized at 16q21-q23. Brain, 2007, 130, 1921-1928.	7.6	46
49	Homozygous Mutation in SPATA16 Is Associated with Male Infertility in Human Globozoospermia. American Journal of Human Genetics, 2007, 81, 813-820.	6.2	273
50	Human mitochondrial pyrophosphatase: cDNA cloning and analysis of the gene in patients with mtDNA depletion syndromes. Genomics, 2006, 87, 410-416.	2.9	22
51	AHI1gene mutations cause specific forms of Joubert syndrome-related disorders. Annals of Neurology, 2006, 59, 527-534.	5.3	125
52	The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nature Genetics, 2005, 37, 1309-1311.	21.4	204
53	Thymidine phosphorylase mutations cause instability of mitochondrial DNA. Gene, 2005, 354, 152-156.	2.2	49
54	Homozygosity mapping of a third Joubert syndrome locus to 6q23. Journal of Medical Genetics, 2004, 41, 273-277.	3.2	37

#	Article	IF	CITATIONS
55	Two cousins with partial trisomy 12q and monosomy 12p recombinants of a familial pericentric inversion of the chromosome 12. American Journal of Medical Genetics Part A, 2004, 125A, 77-85.	2.4	12
56	Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Human Genetics, 2003, 112, 135-142.	3.8	113
57	Homozygosity mapping of Marinesco–Sjögren syndrome to 5q31. European Journal of Human Genetics, 2003, 11, 770-778.	2.8	53
58	Linkage to 18qter differentiates two clinically overlapping syndromes: congenital cataracts-facial dysmorphism-neuropathy (CCFDN) syndrome and Marinesco-Sjogren syndrome. Journal of Medical Genetics, 2002, 39, 838-843.	3.2	20