
Hui-Shan Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3859843/publications.pdf

Version: 2024-02-01

Ниц-Янам Сио

#	Article	IF	CITATIONS
1	MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development. Plant Cell, 2005, 17, 1376-1386.	6.6	950
2	Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016, 2, 16153.	9.3	418
3	SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419, 167-170.	27.8	417
4	A chemical-regulated inducible RNAi system in plants. Plant Journal, 2003, 34, 383-392.	5.7	194
5	Suppression of <i>Arabidopsis</i> ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the <i>Cucumber mosaic virus</i> 2b Protein. Plant Cell, 2012, 24, 259-274.	6.6	173
6	Molecular Characterization and Functional Analysis of a Necrosis- and Ethylene-Inducing, Protein-Encoding Gene Family from <i>Verticillium dahliae</i> . Molecular Plant-Microbe Interactions, 2012, 25, 964-975.	2.6	158
7	Artificial MicroRNAs Highly Accessible to Targets Confer Efficient Virus Resistance in Plants. Journal of Virology, 2008, 82, 11084-11095.	3.4	153
8	The <i>Verticillium</i> â€specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytologist, 2017, 215, 368-381.	7.3	130
9	Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nature Plants, 2019, 5, 1167-1176.	9.3	130
10	Host-Induced Gene Silencing of the Target Gene in Fungal Cells Confers Effective Resistance to the Cotton Wilt Disease Pathogen Verticillium dahliae. Molecular Plant, 2016, 9, 939-942.	8.3	111
11	Hyphopodium-Specific VdNoxB/VdPls1-Dependent ROS-Ca2+ Signaling Is Required for Plant Infection by Verticillium dahliae. PLoS Pathogens, 2016, 12, e1005793.	4.7	107
12	Trans-Kingdom RNA Silencing in Plant–Fungal Pathogen Interactions. Molecular Plant, 2018, 11, 235-244.	8.3	106
13	Colonization process of Arabidopsis thaliana roots by a green fluorescent protein-tagged isolate of Verticillium dahliae. Protein and Cell, 2014, 5, 94-98.	11.0	102
14	A Glutamic Acid-Rich Protein Identified in Verticillium dahliae from an Insertional Mutagenesis Affects Microsclerotial Formation and Pathogenicity. PLoS ONE, 2010, 5, e15319.	2.5	102
15	The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. ELife, 2018, 7, .	6.0	96
16	A Brassica miRNA Regulates Plant Growth and Immunity through Distinct Modes of Action. Molecular Plant, 2020, 13, 231-245.	8.3	90
17	Cleavage of <i>INDOLE-3-ACETIC ACID INDUCIBLE28</i> mRNA by MicroRNA847 Upregulates Auxin Signaling to Modulate Cell Proliferation and Lateral Organ Growth in Arabidopsis. Plant Cell, 2015, 27, 574-590.	6.6	79
18	Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathogens, 2017, 13, e1006275.	4.7	71

Hui-Shan Guo

#	Article	IF	CITATIONS
19	The dual edge of RNA silencing suppressors in the virus–host interactions. Current Opinion in Virology, 2016, 17, 39-44.	5.4	57
20	Phytosphinganine Affects Plasmodesmata Permeability via Facilitating PDLP5-Stimulated Callose Accumulation in Arabidopsis. Molecular Plant, 2020, 13, 128-143.	8.3	55
21	<scp>C</scp> 2â€mediated decrease in <scp>DNA</scp> methylation, accumulation of si <scp>RNA</scp> s, and increase in expression for genes involved in defense pathways in plants infected with beet severe curly top virus. Plant Journal, 2013, 73, 910-917.	5.7	54
22	A fungal milRNA mediates epigenetic repression of a virulence gene in <i>Verticillium dahliae</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180309.	4.0	43
23	Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. PLoS Pathogens, 2020, 16, e1008481.	4.7	43
24	An Improved Single-Step Cloning Strategy Simplifies the <i>Agrobacterium tumefaciens</i> -Mediated Transformation (ATMT)-Based Gene-Disruption Method for <i>Verticillium dahliae</i> . Phytopathology, 2016, 106, 645-652.	2.2	40
25	Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Current Opinion in Virology, 2021, 46, 65-72.	5.4	39
26	The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14, 1012-1023.	8.3	36
27	A fungal effector suppresses the nuclear export of AGO1–miRNA complex to promote infection in plants. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114583119.	7.1	34
28	Satellite RNAs interfere with the function of viral RNA silencing suppressors. Frontiers in Plant Science, 2015, 6, 281.	3.6	33
29	CMV2b-AGO Interaction Is Required for the Suppression of RDR-Dependent Antiviral Silencing in Arabidopsis. Frontiers in Microbiology, 2016, 7, 1329.	3.5	30
30	Nicotiana Small RNA Sequences Support a Host Genome Origin of Cucumber Mosaic Virus Satellite RNA. PLoS Genetics, 2015, 11, e1004906.	3.5	28
31	Genome-wide identification of endogenous RNA-directed DNA methylation loci associated with abundant 21-nucleotide siRNAs in Arabidopsis. Scientific Reports, 2016, 6, 36247.	3.3	26
32	RNA silencing: From discovery and elucidation to application and perspectives. Journal of Integrative Plant Biology, 2022, 64, 476-498.	8.5	24
33	Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives. Plant Communications, 2021, 2, 100167.	7.7	23
34	DNA Geminivirus Infection Induces an Imprinted E3 Ligase Gene to Epigenetically Activate Viral Gene Transcription. Plant Cell, 2020, 32, 3256-3272.	6.6	22
35	Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Current Opinion in Genetics and Development, 2019, 58-59, 62-69.	3.3	19
36	CMV2b-Dependent Regulation of Host Defense Pathways in the Context of Viral Infection. Viruses, 2018, 10, 618.	3.3	14

Hui-Shan Guo

#	Article	IF	CITATIONS
37	Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Scientific Reports, 2016, 6, 35751.	3.3	13
38	DRD1â€Pol Vâ€dependent selfâ€silencing of an exogenous silencer restricts the nonâ€cell autonomous silencing of an endogenous target gene. Plant Journal, 2011, 68, 633-645.	5.7	11
39	Expression of pathogenesis-related genes in cotton roots in response to Verticillium dahliae PAMP molecules. Science China Life Sciences, 2017, 60, 852-860.	4.9	10
40	Cellophane surfaceâ€induced gene, <i>VdCSIN1</i> , regulates hyphopodium formation and pathogenesis via cAMPâ€mediated signalling in <i>Verticillium dahliae</i> . Molecular Plant Pathology, 2019, 20, 323-333.	4.2	10
41	Penetration Assays, Fungal Recovery and Pathogenicity Assays for Verticillium dahliae. Bio-protocol, 2017, 7, e2133.	0.4	10
42	Plant Small RNAs Responsive to Fungal Pathogen Infection. Methods in Molecular Biology, 2018, 1848, 67-80.	0.9	8
43	Verticillium dahliae Secretes Small RNA to Target Host MIR157d and Retard Plant Floral Transition During Infection. Frontiers in Plant Science, 2022, 13, 847086.	3.6	8
44	Exploring the Effectiveness and Durability of Trans-Kingdom Silencing of Fungal Genes in the Vascular Pathogen Verticillium dahliae. International Journal of Molecular Sciences, 2022, 23, 2742.	4.1	7
45	Genome-wide profiling of sRNAs in the Verticillium dahliae-infected Arabidopsis roots. Mycology, 2018, 9, 155-165.	4.4	6
46	IBM1-dependent H3K9 demethylation enables self-silencing of an exogenous silencer for the non-cell autonomous silencing of an endogenous target gene. Journal of Genetics and Genomics, 2019, 46, 149-153.	3.9	4
47	Trans-Kingdom RNA Silencing in Plant-Fungal Disease Control. Methods in Molecular Biology, 2022, 2408, 243-252.	0.9	О