Yoko Kimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3858445/publications.pdf

Version: 2024-02-01

394421 454955 5,350 31 19 30 citations h-index g-index papers 31 31 31 7452 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Role of Atg8 in the regulation of vacuolar membrane invagination. Scientific Reports, 2019, 9, 14828.	3.3	15
2	Parkinâ€mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes. EMBO Reports, 2019, 20, e47728.	4.5	35
3	Accelerated invagination of vacuoles as a stress response in chronically heat-stressed yeasts. Scientific Reports, 2018, 8, 2644.	3.3	12
4	Conserved Mode of Interaction between Yeast Bro1 Family V Domains and YP(X) n L Motif-Containing Target Proteins. Eukaryotic Cell, 2015, 14, 976-982.	3.4	8
5	VCP/Cdc48 rescues the growth defect of a <i>GPI10</i> mutant in yeast. FEBS Letters, 2015, 589, 576-580.	2.8	1
6	The ESCRT-III Adaptor Protein Bro1 Controls Functions of Regulator for Free Ubiquitin Chains 1 (Rfu1) in Ubiquitin Homeostasis. Journal of Biological Chemistry, 2014, 289, 21760-21769.	3.4	11
7	Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.	27.8	1,185
8	Different dynamic movements of wildâ€type and pathogenic <scp>VCP</scp> s and their cofactors to damaged mitochondria in a <scp>P</scp> arkinâ€mediated mitochondrial quality control system. Genes To Cells, 2013, 18, 1131-1143.	1.2	35
9	Huntingtin Aggregation Kinetics and Their Pathological Role in a∢i>Drosophila∢/i>Huntington's Disease Model. Genetics, 2012, 190, 581-600.	2.9	71
10	Rescue of growth defects of yeast cdc48 mutants by pathogenic IBMPFD-VCPs. Journal of Structural Biology, 2012, 179, 93-103.	2.8	6
11	Title is missing!. Kagaku To Seibutsu, 2010, 48, 589-591.	0.0	O
12	Regulatory mechanisms involved in the control of ubiquitin homeostasis. Journal of Biochemistry, 2010, 147, 793-798.	1.7	162
13	p97/valosinâ€containing protein (VCP) is highly modulated by phosphorylation and acetylation. Genes To Cells, 2009, 14, 483-497.	1.2	46
14	An Inhibitor of a Deubiquitinating Enzyme Regulates Ubiquitin Homeostasis. Cell, 2009, 137, 549-559.	28.9	79
15	Therapeutic Prospects for the Prevention of Neurodegeneration in Huntingtons Disease and the Polyglutamine Repeat Disorders. Mini-Reviews in Medicinal Chemistry, 2007, 7, 99-106.	2.4	3
16	ATPase Activity of p97/Valosin-containing Protein Is Regulated by Oxidative Modification of the Evolutionally Conserved Cysteine 522 Residue in Walker A Motif. Journal of Biological Chemistry, 2005, 280, 41332-41341.	3.4	58
17	The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions. Genes To Cells, 2004, 9, 685-696.	1.2	17
18	Polyglutamine Diseases and Molecular Chaperones. IUBMB Life, 2003, 55, 337-345.	3.4	18

#	Article	IF	CITATION
19	Analysis of Yeast Prion Aggregates with Amyloid-staining Compound In Vivo. Cell Structure and Function, 2003, 28, 187-193.	1.1	34
20	Interaction between the N-terminal and Middle Regions Is Essential for the in Vivo Function of HSP90 Molecular Chaperone. Journal of Biological Chemistry, 2002, 277, 34959-34966.	3.4	20
21	Circumvention of Chaperone Requirement for Aggregate Formation of a Short Polyglutamine Tract by the Co-expression of a Long Polyglutamine Tract. Journal of Biological Chemistry, 2002, 277, 37536-37541.	3.4	7
22	Initial process of polyglutamine aggregate formationin vivo. Genes To Cells, 2001, 6, 887-897.	1.2	24
23	VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death and Differentiation, 2001, 8, 977-984.	11.2	250
24	Cdc37 is a molecular chaperone with specific functions in signal transduction Genes and Development, 1997, 11, 1775-1785.	5.9	201
25	Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science, 1995, 268, 1362-1365.	12.6	247
26	Temperature-sensitive mutants of hsp82 of the budding yeast Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1994, 242, 517-527.	2.4	51
27	Involvement of acis-element that binds an H2TF-l/NFxB like factor(s) in the virus-induced interferon- \hat{l}^2 gene expression. Nucleic Acids Research, 1989, 17, 3335-3346.	14.5	129
28	Induction of endogenous IFN- \hat{l}_{\pm} and IFN- \hat{l}_{\pm}^2 genes by a regulatory transcription factor, IRF-1. Nature, 1989, 337, 270-272.	27.8	381
29	Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell, 1989, 58, 729-739.	28.9	965
30	Induction of the transcription factor IRF-1 and interferon-beta mRNAs by cytokines and activators of second-messenger pathways Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9936-9940.	7.1	288
31	Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN- \hat{l}^2 gene regulatory elements. Cell. 1988, 54, 903-913.	28.9	991