
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3857508/publications.pdf Version: 2024-02-01

Ναζήλ Ηλωσανί

#	Article	IF	CITATIONS
1	Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischaemic injury: a translational study. Cardiovascular Research, 2023, 118, 3374-3385.	3.8	10
2	Nicotinicâ€acid derivative BGPâ€15 improves diastolic function in a rabbit model of atherosclerotic cardiomyopathy. British Journal of Pharmacology, 2022, 179, 2240-2258.	5.4	3
3	Do they come together? Protein quality control, stress-activated signaling, and "sarcostat―in hypertrophic cardiomyopathy progression. International Journal of Cardiology, 2022, 347, 44-45.	1.7	1
4	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30
5	Effects of Atrial Fibrillation on the Human Ventricle. Circulation Research, 2022, 130, 994-1010.	4.5	32
6	Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. Journal of Molecular and Cellular Cardiology, 2022, 167, 17-31.	1.9	52
7	Functional Characterization of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G). International Journal of Molecular Sciences, 2022, 23, 4465.	4.1	3
8	Ca2+/calmodulinâ€dependent protein kinase II and protein kinase G oxidation contributes to impaired sarcomeric proteins in hypertrophy model. ESC Heart Failure, 2022, 9, 2585-2600.	3.1	5
9	SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress. International Journal of Cardiology, 2022, 362, 196-205.	1.7	9
10	Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 43-59.	3.8	72
11	Empagliflozin improves endothelial and cardiomyocyte functionÂin human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovascular Research, 2021, 117, 495-507.	3.8	167
12	MALDIâ€IMS as a Tool to Determine the Myocardial Response to Syndecanâ€2â€6elected Mesenchymal Stromal Cell Application in an Experimental Model of Diabetic Cardiomyopathy. Proteomics - Clinical Applications, 2021, 15, e2000050.	1.6	8
13	Linagliptin prevents left ventricular stiffening by reducing titin cleavage and hypophosphorylation. Journal of Cellular and Molecular Medicine, 2021, 25, 729-741.	3.6	6
14	Cardiac transcriptomic remodeling in metabolic syndrome. , 2021, , 187-211.		0
15	A mechanistic rationale for the investigation of sodium–glucose coâ€transporter 2 inhibitors in heart failure with preserved ejection fraction. Letter regarding the article †Baseline characteristics of patients with heart failure with preserved ejection fraction in the <scp>EMPERORâ€Preserved</scp> trial'. European lournal of Heart Failure. 2021. 23. 841-841.	7.1	4
16	Impact of Syndecan-2-Selected Mesenchymal Stromal Cells on the Early Onset of Diabetic Cardiomyopathy in Diabetic db/db Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 632728.	2.4	4
17	Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. European Heart Journal, 2021, 42, 1940-1958.	2.2	34
18	Interventricular Differences of Signaling Pathways-Mediated Regulation of Cardiomyocyte Function in Response to High Oxidative Stress in the Post-Ischemic Failing Rat Heart. Antioxidants, 2021, 10, 964.	5.1	5

#	Article	IF	CITATIONS
19	The Interplay between S-Glutathionylation and Phosphorylation of Cardiac Troponin I and Myosin Binding Protein C in End-Stage Human Failing Hearts. Antioxidants, 2021, 10, 1134.	5.1	16
20	Integration of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G) into Cellular Structures. Antioxidants, 2021, 10, 1082.	5.1	5
21	Stress activated signalling impaired protein quality control pathways in human hypertrophic cardiomyopathy. International Journal of Cardiology, 2021, 344, 160-169.	1.7	15
22	De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents. International Journal of Molecular Sciences, 2021, 22, 9625.	4.1	8
23	SGLT2 Inhibitors and Their Mode of Action in Heart Failure—Has the Mystery Been Unravelled?. Current Heart Failure Reports, 2021, 18, 315-328.	3.3	43
24	Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 2416-2433.	3.8	27
25	Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. International Journal of Molecular Sciences, 2021, 22, 11154.	4.1	3
26	Potential Mechanisms of SGLT2 Inhibitors for the Treatment of Heart Failure With Preserved Ejection Fraction. Frontiers in Physiology, 2021, 12, 752370.	2.8	12
27	Abstract 10973: Tenascin-C Deficiency Rescues the Effect of Diabetes on Cardiac and Vascular Dysfunction in Mice. Circulation, 2021, 144, .	1.6	Ο
28	Abstract 10477: Targeting the Methyltransferase Setd7 Prevents Myocardial Ischemic Injury: A Translational Study. Circulation, 2021, 144, .	1.6	0
29	Stratified Treatment of Heart Failure with preserved Ejection Fraction: rationale and design of the STADIAâ€HFpEF trial. ESC Heart Failure, 2020, 7, 4478-4487.	3.1	15
30	Long-term effects of empagliflozin on excitation-contraction-coupling in human induced pluripotent stem cell cardiomyocytes. Journal of Molecular Medicine, 2020, 98, 1689-1700.	3.9	10
31	The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophysical Reviews, 2020, 12, 947-968.	3.2	47
32	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	3.8	51
33	Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24545-24556.	7.1	37
34	Prophylactic, single-drug cardioprotection in a comparative, experimental study of doxorubicin-induced cardiomyopathy. Journal of Translational Medicine, 2020, 18, 470.	4.4	6
35	CaMKII activity contributes to homeometric autoregulation of the heart: A novel mechanism for the Anrep effect. Journal of Physiology, 2020, 598, 3129-3153.	2.9	23
36	Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Frontiers in Physiology, 2020, 11, 345.	2.8	29

#	Article	IF	CITATIONS
37	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	3.8	39
38	Regression of left ventricular hypertrophy with SGLT2 inhibitors. European Heart Journal, 2020, 41, 3433-3436.	2.2	11
39	Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nature Communications, 2020, 11, 2039.	12.8	63
40	Modulation of Titin-Based Stiffness in Hypertrophic Cardiomyopathy via Protein Kinase D. Frontiers in Physiology, 2020, 11, 240.	2.8	31
41	C-type natriuretic peptide moderates titin-based cardiomyocyte stiffness. JCI Insight, 2020, 5, .	5.0	25
42	Diastolic dysfunction is initiated by cardiomyocyte impairment ahead of endothelial dysfunction due to increased oxidative stress and inflammation in an experimental prediabetes model. Journal of Molecular and Cellular Cardiology, 2019, 137, 119-131.	1.9	27
43	Mode-of-action of the PROPELLA concept in fulminant myocarditis. European Heart Journal, 2019, 40, 2164-2169.	2.2	49
44	The continuous heart failure spectrum: moving beyond an ejection fraction classification. European Heart Journal, 2019, 40, 2155-2163.	2.2	195
45	Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Scientific Reports, 2019, 9, 2956.	3.3	11
46	Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H459-H475.	3.2	19
47	Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. European Journal of Heart Failure, 2019, 21, 14-22.	7.1	71
48	Treatments targeting inotropy. European Heart Journal, 2019, 40, 3626-3644.	2.2	123
49	The PDE9A inhibitor PF04447943 improves coronary arteriole vasodilation and left ventricular diastolic dysfunction in HFpEF. FASEB Journal, 2019, 33, 693.10.	0.5	0
50	Stretch-induced compliance: a novel adaptive biological mechanism following acute cardiac load. Cardiovascular Research, 2018, 114, 656-667.	3.8	18
51	The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure, 2018, 20, 445-459.	7.1	118
52	Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nature Communications, 2018, 9, 262.	12.8	44
53	Molecular and pathophysiological links between heart failure with preserved ejection fraction and type 2 diabetes mellitus. European Journal of Heart Failure, 2018, 20, 1649-1652.	7.1	11
54	Empagliflozin directly improves diastolic function in human heart failure. European Journal of Heart Failure, 2018, 20, 1690-1700.	7.1	165

#	Article	IF	CITATIONS
55	Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1287-1303.	3.8	91
56	Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1. Circulation Research, 2018, 123, 342-355.	4.5	64
57	Acute stimulation of the soluble guanylate cyclase does not impact on left ventricular capacitance in normal and hypertrophied porcine hearts in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H669-H680.	3.2	6
58	Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1273-1280.	3.8	64
59	α-B Crystallin Reverses High Diastolic Stiffness of Failing Human Cardiomyocytes. Circulation: Heart Failure, 2017, 10, e003626.	3.9	20
60	Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy. Cardiovascular Research, 2017, 113, 1161-1172.	3.8	54
61	Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophysical Reviews, 2017, 9, 225-237.	3.2	65
62	Impact of cGMP-PKG Pathway Modulation on Titin Phosphorylation and Titin-Based Myocardial Passive Stiffness. Biophysical Journal, 2017, 112, 257a.	0.5	0
63	Placenta-Derived Adherent Stromal Cells Improve Diabetes Mellitus-Associated Left Ventricular Diastolic Performance. Stem Cells Translational Medicine, 2017, 6, 2135-2145.	3.3	28
64	CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS ONE, 2017, 12, e0182643.	2.5	28
65	Sphingosineâ€1â€Phosphate Receptor 1 Regulates Cardiac Function by Modulating Ca ²⁺ Sensitivity and Na ⁺ /H ⁺ Exchange and Mediates Protection by Ischemic Preconditioning. Journal of the American Heart Association, 2016, 5, .	3.7	51
66	Impact of cGMP-PKG Pathway Modulation on Titin Phosphorylation and Titin-Based Myocardial Passive Stiffness. Biophysical Journal, 2016, 110, 526a.	0.5	1
67	A Novel Role for PP5 in Regulating Titin Phosphorylation and Function in the Heart. Biophysical Journal, 2016, 110, 298a.	0.5	Ο
68	Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. International Journal of Cardiology, 2016, 203, 1061-1066.	1.7	42
69	From comorbidities to heart failure with preserved ejection fraction: a story of oxidative stress. Heart, 2016, 102, 320-330.	2.9	29
70	Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure, 2016, 4, 312-324.	4.1	390
71	Oxidative Stress Regulates Titin Elasticity by Affecting Ig-Domain Stability. Biophysical Journal, 2015, 108, 444a.	0.5	0
72	Intercellular communication lessons in heart failure. European Journal of Heart Failure, 2015, 17, 1091-1103.	7.1	47

#	Article	IF	CITATIONS
73	A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1407-H1418.	3.2	70
74	A change of heart: oxidative stress in governing muscle function?. Biophysical Reviews, 2015, 7, 321-341.	3.2	28
75	Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature, 2015, 519, 472-476.	27.8	274
76	Abstract 210: Titin Phosphorylation by Protein Kinase G as a Novel Mechanism of Diastolic Adaptation to Acute Hemodynamic Overload. Circulation Research, 2015, 117, .	4.5	0
77	S-Glutathionylation of Cryptic Cysteines Enhances Titin Elasticity by Blocking Protein Folding. Cell, 2014, 156, 1235-1246.	28.9	170
78	Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. Journal of Cell Biology, 2014, 204, 187-202.	5.2	98
79	Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Research in Cardiology, 2014, 109, 449.	5.9	55
80	Left ventricular diastolic dysfunction and myocardial stiffness in diabetic mice is attenuated by inhibition of dipeptidyl peptidase 4. Cardiovascular Research, 2014, 104, 423-431.	3.8	70
81	Myocardial Titin: An Important Modifier of Cardiac Stiffness. Biophysical Journal, 2014, 106, 346a.	0.5	0
82	Small Heat Shock Proteins Prevent Titin Aggregation-Induced Stiffening in Human Myocytes. Biophysical Journal, 2014, 106, 160a.	0.5	0
83	Gigantic Business. Circulation Research, 2014, 114, 1052-1068.	4.5	288
84	Large-Scale Modulation of Titin Elasticity by S-Glutathionylation of Cryptic Cysteines. Biophysical Journal, 2014, 106, 454a.	0.5	0
85	Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. Journal of General Physiology, 2014, 143, 1432OIA1.	1.9	0
86	Increased nitrosative/oxidative stress lowers myocardial protein kinase G activity in heart failure with preserved ejection fraction. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	2
87	Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovascular Research, 2013, 97, 464-471.	3.8	191
88	Myocardial Titin Hypophosphorylation Importantly Contributes to Heart Failure With Preserved Ejection Fraction in a Rat Metabolic Risk Model. Circulation: Heart Failure, 2013, 6, 1239-1249.	3.9	241
89	Crucial Role for Ca ²⁺ /Calmodulin-Dependent Protein Kinase-II in Regulating Diastolic Stress of Normal and Failing Hearts via Titin Phosphorylation. Circulation Research, 2013, 112, 664-674.	4.5	160
90	Low Myocardial Protein Kinase G Activity in Heart Failure With Preserved Ejection Fraction. Circulation, 2012, 126, 830-839.	1.6	418

#	Article	IF	CITATIONS
91	Alteration of the beta-adrenergic signaling pathway in human heart failure. Current Pharmaceutical Biotechnology, 2012, 13, 2522-31.	1.6	5
92	Treatment of Heart Failure With Normal Ejection Fraction. Current Treatment Options in Cardiovascular Medicine, 2011, 13, 26-34.	0.9	8
93	Sildenafil and B-Type Natriuretic Peptide Acutely Phosphorylate Titin and Improve Diastolic Distensibility In Vivo. Circulation, 2011, 124, 2882-2891.	1.6	162
94	Distinct myocardial effects of beta-blocker therapy in heart failure with normal and reduced left ventricular ejection fraction. European Heart Journal, 2009, 30, 1863-1872.	2.2	50
95	Hypophosphorylation of the Stiff N2B Titin Isoform Raises Cardiomyocyte Resting Tension in Failing Human Myocardium. Circulation Research, 2009, 104, 780-786.	4.5	318
96	Absence of Thrombospondin-2 Causes Age-Related Dilated Cardiomyopathy. Circulation, 2009, 120, 1585-1597.	1.6	92
97	Lack of specificity of antibodies directed against human beta-adrenergic receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 379, 403-407.	3.0	69
98	Myofilament dysfunction in cardiac disease from mice to men. Journal of Muscle Research and Cell Motility, 2008, 29, 189-201.	2.0	67
99	Diastolic Stiffness of the Failing Diabetic Heart. Circulation, 2008, 117, 43-51.	1.6	621
100	Response to Letter Regarding Article, "Diastolic Stiffness of the Failing Diabetic Heart: Importance of Fibrosis, Advanced Glycation End Products, and Myocyte Resting Tension― Circulation, 2008, 117, .	1.6	2
101	Sarcomeric dysfunction in heart failure. Cardiovascular Research, 2007, 77, 649-658.	3.8	150
102	Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Frontiers in Physiology, 0, 13, .	2.8	13