Marijn van Stralen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3856789/publications.pdf

Version: 2024-02-01

	361413	454955
1,279	20	30
citations	h-index	g-index
101	101	2.475
101	101	1475
docs citations	times ranked	citing authors
	citations 101	1,279 20 citations h-index 101 101

#	Article	IF	Citations
1	MRIâ€based synthetic CT shows equivalence to conventional CT for the morphological assessment of the hip joint. Journal of Orthopaedic Research, 2022, 40, 954-964.	2.3	27
2	Workflow for automatic renal perfusion quantification using ASLâ€MRI and machine learning. Magnetic Resonance in Medicine, 2022, 87, 800-809.	3.0	6
3	Magnetic Resonance Imaging Versus Computed Tomography for Threeâ€Dimensional Bone Imaging of Musculoskeletal Pathologies: A Review. Journal of Magnetic Resonance Imaging, 2022, 56, 11-34.	3.4	27
4	Synthetic CT for the planning of MR-HIFU treatment of bone metastases in pelvic and femoral bones: a feasibility study. European Radiology, 2022, , 1 .	4.5	9
5	Efficient cascaded Vâ€net optimization for lower extremity CT segmentation validated using bone morphology assessment. Journal of Orthopaedic Research, 2022, , .	2.3	6
6	Multiâ€organ comparison of flowâ€based arterial spin labeling techniques: Spatially nonâ€selective labeling for cerebral and renal perfusion imaging. Magnetic Resonance in Medicine, 2021, 85, 2580-2594.	3.0	18
7	Exploring label dynamics of velocityâ€selective arterial spin labeling in the kidney. Magnetic Resonance in Medicine, 2021, 86, 131-142.	3.0	6
8	What a stranded whale with scoliosis can teach us about human idiopathic scoliosis. Scientific Reports, 2021, 11, 7218.	3.3	3
9	Feasibility of Velocityâ€Selective Arterial Spin Labeling in Breast Cancer Patients for Noncontrastâ€Enhanced Perfusion Imaging. Journal of Magnetic Resonance Imaging, 2021, 54, 1282-1291.	3.4	8
10	Anterior lengthening in scoliosis occurs only in the disc and is similar in different types of scoliosis. Studies in Health Technology and Informatics, 2021, 280, 58-62.	0.3	1
11	Prospective Evaluation of Local Sustained Release of Celecoxib in Dogs with Low Back Pain. Pharmaceutics, 2021, 13, 1178.	4.5	8
12	CT to MR registration of complex deformations in the knee joint through dual quaternion interpolation of rigid transforms. Physics in Medicine and Biology, 2021, 66, 175024.	3.0	5
13	Perfusion imaging of neuroblastoma and nephroblastoma in a paediatric population using pseudo-continuous arterial spin-labelling magnetic resonance imaging. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021 , , 1 .	2.0	O
14	Magnetic resonance imaging–based synthetic computed tomography of the lumbar spine for surgical planning: a clinical proof-of-concept. Neurosurgical Focus, 2021, 50, E13.	2.3	35
15	Deep learning–based MRâ€ŧo T synthesis: The influence of varying gradient echo–based MR images as input channels. Magnetic Resonance in Medicine, 2020, 83, 1429-1441.	3.0	77
16	Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 81-94.	2.0	16
17	Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours. Radiotherapy and Oncology, 2020, 153, 220-227.	0.6	33
18	Influence of labeling parameters and respiratory motion on velocityâ€selective arterial spin labeling for renal perfusion imaging. Magnetic Resonance in Medicine, 2020, 84, 1919-1932.	3.0	10

#	Article	IF	CITATIONS
19	Anterior lengthening in scoliosis occurs only in the disc and is similar in different types of scoliosis. Spine Journal, 2020, 20, 1653-1658.	1.3	13
20	A computed tomography-based spatial reference for pedicle screw placement in adolescent idiopathic scoliosis. Spine Deformity, 2020, 8, 67-76.	1.5	6
21	CT-based study of vertebral and intravertebral rotation in right thoracic adolescent idiopathic scoliosis. European Spine Journal, 2019, 28, 3044-3052.	2.2	8
22	OC-0515 Synthetic CT generation for Head and Neck radiotherapy by a 3D convolutional neural network. Radiotherapy and Oncology, 2019, 133, S268-S269.	0.6	0
23	Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patchâ€based threeâ€dimensional convolutional neural network. Medical Physics, 2019, 46, 4095-4104.	3.0	67
24	The Changing Position of the Center of Mass of the Thorax During Growth in Relation to Pre-existent Vertebral Rotation. Spine, 2019, 44, 679-684.	2.0	11
25	Enabling freeâ€breathing background suppressed renal pCASL using fat imaging and retrospective motion correction. Magnetic Resonance in Medicine, 2019, 82, 276-288.	3.0	9
26	Surgical Outcomes of Anterior Versus Posterior Fusion in Lenke Type 1 Adolescent Idiopathic Scoliosis. Spine, 2019, 44, E823-E832.	2.0	11
27	Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions. Ultrasound in Obstetrics and Gynecology, 2019, 54, 270-275.	1.7	31
28	Selection Strategies for Atlas-Based Mosaicing of Left Atrial 3-D Transesophageal Echocardiography Data. Ultrasound in Medicine and Biology, 2018, 44, 1533-1543.	1.5	0
29	Anterior-posterior length discrepancy of the spinal column in adolescent idiopathic scoliosis—a 3D CT study. Spine Journal, 2018, 18, 2259-2265.	1.3	23
30	What Is the Actual 3D Representation of the Rib Vertebra Angle Difference (Mehta Angle)?. Spine, 2018, 43, E92-E97.	2.0	7
31	Fluid filling of the digestive tract for improved proton resonance frequency shiftâ€based MR thermometry in the pancreas. Journal of Magnetic Resonance Imaging, 2018, 47, 692-701.	3.4	6
32	Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery. World Neurosurgery, 2018, 109, e217-e228.	1.3	4
33	Automatic segmentation of puborectalis muscle on threeâ€dimensional transperineal ultrasound. Ultrasound in Obstetrics and Gynecology, 2018, 52, 97-102.	1.7	10
34	Atlas-Based Mosaicing of Left Atrial 3-D Transesophageal Echocardiography Images. Ultrasound in Medicine and Biology, 2017, 43, 765-774.	1.5	4
35	Upright, prone, and supine spinal morphology and alignment in adolescent idiopathic scoliosis. Scoliosis and Spinal Disorders, 2017, 12, 6.	2.3	52
36	The Height-Width-Depth Ratios of the Intervertebral Discs and Vertebral Bodies in Adolescent Idiopathic Scoliosis vs Controls in a Chinese Population. Scientific Reports, 2017, 7, 46448.	3.3	12

#	Article	IF	Citations
37	Asymmetry of the Vertebral Body and Pedicles in the True Transverse Plane in Adolescent Idiopathic Scoliosis: A CT-Based Study. Spine Deformity, 2017, 5, 37-45.	1.5	25
38	Anterior Spinal Overgrowth Is the Result of the Scoliotic Mechanism and Is Located in the Disc. Spine, 2017, 42, 818-822.	2.0	44
39	Predicting clinical benefit from everolimus in patients with advanced solid tumors, the CPCT-03 study. Oncotarget, 2017, 8, 55582-55592.	1.8	9
40	The time to progression ratio: a new individualized volumetric parameter for the early detection of clinical benefit of targeted therapies. Annals of Oncology, 2016, 27, 1638-1643.	1.2	17
41	Anterior Overgrowth in Primary Curves, Compensatory Curves and Junctional Segments in Adolescent Idiopathic Scoliosis. PLoS ONE, 2016, 11, e0160267.	2.5	42
42	Atlas-based mosaicing of 3D transesophageal echocardiography images of the left atrium. , 2015, , .		1
43	Seeing More by Showing Less: Orientation-Dependent Transparency Rendering for Fiber Tractography Visualization. PLoS ONE, 2015, 10, e0139434.	2.5	14
44	Improved Segmentation of Multiple Cavities of the Heart in Wide-View 3-D Transesophageal Echocardiograms. Ultrasound in Medicine and Biology, 2015, 41, 1991-2000.	1.5	7
45	Full-cycle left ventricular segmentation and tracking in 3D echocardiography using active appearance models., 2015,,.		3
46	Arterial and portal venous liver perfusion using selective spin labelling MRI. European Radiology, 2015, 25, 1529-1540.	4.5	13
47	Detailed imaging and genetic analysis reveal a secondary <scp><i>BRAF</i>^L</scp> 505H resistance mutation and extensive intrapatient heterogeneity in metastatic <i><scp>BRAF</scp></i> mutant melanoma patients treated with vemurafenib. Pigment Cell and Melanoma Research, 2015, 28, 318-323.	3.3	20
48	Multiframe registration of real-time three-dimensional echocardiography time series. Journal of Medical Imaging, 2014, 1, 014004.	1.5	8
49	Segmentation of multiple heart cavities in wide-view fused 3D transesophageal echocardiograms. , 2014, , .		0
50	Three-Dimensional Characterization of Torsion and Asymmetry of the Intervertebral Discs Versus Vertebral Bodies in Adolescent Idiopathic Scoliosis. Spine, 2014, 39, E1159-E1166.	2.0	86
51	Liver perfusion in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI): comparison of enhancement in Gd-BT-DO3A and Gd-EOB-DTPA in normal liver parenchyma. European Radiology, 2014, 24, 2146-2156.	4.5	16
52	Segmentation of Multi-Center 3D Left Ventricular Echocardiograms by Active Appearance Models. , 2014, , .		2
53	A transoesophageal echocardiographic image acquisition protocol for wide-view fusion of three-dimensional datasets to support atrial fibrillation catheter ablation. Journal of Interventional Cardiac Electrophysiology, 2013, 37, 21-26.	1.3	6
54	Simultaneous pairwise registration for image mosaicing of TEE data. , 2013, , .		0

#	Article	IF	CITATIONS
55	Simultaneous Multiresolution Strategies for Nonrigid Image Registration. IEEE Transactions on Image Processing, 2013, 22, 4905-4917.	9.8	15
56	A patient specific 4D MRI liver motion model based on sparse imaging and registration. , 2013, , .		1
57	Evolution of the Ablation Region After Magnetic Resonance–Guided High-Intensity Focused Ultrasound Ablation in a Vx2 Tumor Model. Investigative Radiology, 2013, 48, 381-386.	6.2	30
58	Optimal kernel sizes for 4D image reconstruction using normalized convolution from sparse fast-rotating transes ophageal 2D ultrasound images. , 2012, , .		1
59	Determination of a Facial Nerve Safety Zone for Navigated Temporal Bone Surgery. Operative Neurosurgery, 2012, 70, ons50-ons60.	0.8	7
60	Comparison of spatiotemporal interpolators for 4D image reconstruction from 2D transesophageal ultrasound. Proceedings of SPIE, 2012, , .	0.8	1
61	Targeted Vessel Ablation for More Efficient Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids. CardioVascular and Interventional Radiology, 2012, 35, 1205-1210.	2.0	34
62	Validation of Exposure Visualization and Audible Distance Emission for Navigated Temporal Bone Drilling in Phantoms. PLoS ONE, 2012, 7, e41262.	2.5	12
63	Spatiotemporal interpolation by normalized convolution for 4D transes ophageal echocardiography. , 2011, , .		3
64	Improving neuronavigation through workflow and sound feedback and interactive brainshift correction. Proceedings of SPIE, $2011, \ldots$	0.8	0
65	Automated analysis of three-dimensional stress echocardiography. Netherlands Heart Journal, 2011, 19, 307-310.	0.8	7
66	Left Ventricular Border Tracking Using Cardiac Motion Models and Optical Flow. Ultrasound in Medicine and Biology, 2011, 37, 605-616.	1.5	30
67	Registration of multi-view apical 3D echocardiography images. Proceedings of SPIE, 2011, , .	0.8	1
68	Supervised segmentation methods for the hippocampus in MR images. , $2011, \ldots$		0
69	Intra-temporal facial nerve centerline segmentation for navigated temporal bone surgery. , 2011, , .		3
70	Probabilistic framework for tracking in artifact-prone 3D echocardiograms. Medical Image Analysis, 2010, 14, 750-758.	11.6	19
71	Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography. Medical Image Analysis, 2010, 14, 582-593.	11.6	16
72	Artifact aware tracking of left ventricular contours in 3D ultrasound. , 2010, , .		1

#	Article	IF	Citations
73	Automatic active appearance model segmentation of 3D echocardiograms., 2010,,.		17
74	Automatic 3D left ventricular border detection using active appearance models. , 2010, , .		2
75	Optimal discrete multi-resolution deformable image registration. , 2009, , .		3
76	Tracking left ventricular borders in 3D echocardiographic sequences using motion-guided optical flow. , 2009, , .		6
77	Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography. Proceedings of SPIE, 2009, , .	0.8	3
78	Sideâ€byâ€Side Viewing of Anatomically Aligned Left Ventricular Segments in Threeâ€Dimensional Stress Echocardiography. Echocardiography, 2009, 26, 189-195.	0.9	19
79	Tracking the endocardial border in artifact-prone 3D images. , 2009, , .		0
80	Left Ventricle Segmentation from Contrast Enhanced Fast Rotating Ultrasound Images Using Three Dimensional Active Shape Models. Lecture Notes in Computer Science, 2009, , 295-302.	1.3	10
81	Time Continuous Detection of the Left Ventricular Long Axis and the Mitral Valve Plane in 3-D Echocardiography. Ultrasound in Medicine and Biology, 2008, 34, 196-207.	1.5	31
82	Sparse Registration for Three-Dimensional Stress Echocardiography. IEEE Transactions on Medical Imaging, 2008, 27, 1568-1579.	8.9	24
83	Rapid 3D Transesophageal Echocardiography using a fast-rotating multiplane transducer. , 2008, , .		3
84	Improving 3D active appearance model segmentation of the left ventricle with Jacobian tuning. Proceedings of SPIE, 2008, , .	0.8	7
85	P2A-8 Fully Automatic Detection of Left Ventricular Long Axis and Mitral Valve Plane in 3D Echocardiography. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0
86	P2A-6 Automatic Segmentation of the Left Ventricle in 3D Echocardiography Using Active Appearance Models. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	9
87	Automated Tracking of the Mitral Valve Annulus Motion in Apical Echocardiographic Images Using Multidimensional Dynamic Programming. Ultrasound in Medicine and Biology, 2007, 33, 1389-1399.	1.5	28
88	PS-8 Sparse Appearance Model Based Registration and Segmentation of 3D Echocardiographic Images. , 2006, , .		0
89	Novel spatiotemporal voxel interpolation with multibeat fusion for 3D echocardiography with irregular data distribution., 2006, 6147, 234.		7
90	Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography., 2006, 6144, 405.		7

#	Article	IF	CITATIONS
91	Semi-automatic border detection method for left ventricular volume estimation in 4D ultrasound data., 2005,,.		7
92	Left Ventricular Volume Estimation in Cardiac Three-dimensional Ultrasound. Academic Radiology, 2005, 12, 1241-1249.	2.5	24
93	A semi-automatic endocardial border detection method for the left ventricle in 4D ultrasound data sets. International Congress Series, 2004, 1268, 1078-1083.	0.2	1
94	A Semi-automatic Endocardial Border Detection Method for 4D Ultrasound Data. Lecture Notes in Computer Science, 2004, , 43-50.	1.3	1
95	Improved spatiotemporal voxel space interpolation for 3D echocardiography with irregular sampling and multibeat fusion. , 0, , .		3
96	A novel dynamic programming based semi-automatic endocardial border detection method for 4D cardiac ultrasound. , 0 , , .		0