
Zi-Xian Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3856574/publications.pdf Version: 2024-02-01

71-XIANLIAO

#	Article	IF	CITATIONS
1	Highly cited research articles in Journal of Controlled Release: Commentaries and perspectives by authors. Journal of Controlled Release, 2014, 190, 29-74.	9.9	394
2	Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Advanced Drug Delivery Reviews, 2013, 65, 865-879.	13.7	373
3	Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials, 2013, 34, 1063-1072.	11.4	228
4	pH-Responsive Nanoparticles Shelled with Chitosan for Oral Delivery of Insulin: From Mechanism to Therapeutic Applications. Accounts of Chemical Research, 2012, 45, 619-629.	15.6	206
5	Nanoparticles with Dual Responses to Oxidative Stress and Reduced pH for Drug Release and Anti-inflammatory Applications. ACS Nano, 2014, 8, 1213-1221.	14.6	162
6	Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector. Biomaterials, 2011, 32, 239-248.	11.4	154
7	Effective Photothermal Killing of Pathogenic Bacteria by Using Spatially Tunable Colloidal Gels with Nanoâ€Localized Heating Sources. Advanced Functional Materials, 2015, 25, 721-728.	14.9	132
8	An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. Journal of Controlled Release, 2015, 208, 42-51.	9.9	119
9	A Liposomal System Capable of Generating CO ₂ Bubbles to Induce Transient Cavitation, Lysosomal Rupturing, and Cell Necrosis. Angewandte Chemie - International Edition, 2012, 51, 10089-10093.	13.8	112
10	Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance. Biomaterials, 2013, 34, 1-10.	11.4	111
11	Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nature Communications, 2015, 6, 6456.	12.8	99
12	Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials, 2015, 56, 26-35.	11.4	93
13	Enhancement of efficiencies of the cellular uptake and gene silencing of chitosan/siRNA complexes via the inclusion of a negatively charged poly(l³-glutamic acid). Biomaterials, 2010, 31, 8780-8788.	11.4	67
14	Effects of the nanostructure of dendrimer/DNA complexes on their endocytosis and gene expression. Biomaterials, 2010, 31, 5660-5670.	11.4	65
15	Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials, 2012, 33, 3306-3315.	11.4	63
16	Targeting Tumor Microenvironment by Bioreduction-Activated Nanoparticles for Light-Triggered Virotherapy. ACS Nano, 2018, 12, 9894-9902.	14.6	61
17	Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery. Nanoscale, 2015, 7, 8554-8565.	5.6	58
18	A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials, 2014, 35, 500-508.	11.4	56

ZI-XIAN LIAO

#	Article	IF	CITATIONS
19	Release of Doxorubicin by a Folate-Grafted, Chitosan-Coated Magnetic Nanoparticle. Nanomaterials, 2017, 7, 85.	4.1	42
20	Self-organized nanoparticles prepared by guanidine- and disulfide-modified chitosan as a gene delivery carrier. Journal of Materials Chemistry, 2011, 21, 16918.	6.7	33
21	Cellular Organelle-Dependent Cytotoxicity of Iron Oxide Nanoparticles and Its Implications for Cancer Diagnosis and Treatment: A Mechanistic Investigation. Chemistry of Materials, 2016, 28, 9017-9025.	6.7	31
22	Remote Control of Light-Triggered Virotherapy. ACS Nano, 2016, 10, 10339-10346.	14.6	31
23	Enhancement of efficiency of chitosan-based complexes for gene transfection with poly(γ-glutamic) Tj ETQq1 1 2014, 193, 304-315.	0.784314 9.9	rgBT /Overlo 30
24	Repolarization of M2 to M1 Macrophages Triggered by Lactate Oxidase Released from Methylcellulose Hydrogel. Bioconjugate Chemistry, 2019, 30, 2697-2702.	3.6	30
25	Injectable Cell Constructs Fabricated via Culture on a Thermoresponsive Methylcellulose Hydrogel System for the Treatment of Ischemic Diseases. Advanced Healthcare Materials, 2014, 3, 1133-1148.	7.6	29
26	Chitosan: Its Applications in Drug-Eluting Devices. Advances in Polymer Science, 2011, , 185-230.	0.8	28
27	Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter, 2012, 8, 1420-1427.	2.7	27
28	CS-PEI/Beclin-siRNA Downregulate Multidrug Resistance Proteins and Increase Paclitaxel Therapeutic Efficacy against NSCLC. Molecular Therapy - Nucleic Acids, 2019, 17, 477-490.	5.1	25
29	Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discovery Today, 2021, 26, 2508-2514.	6.4	24
30	ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111443.	5.0	21
31	Dual Stimuli-Responsive Block Copolymers with Adjacent Redox- and Photo-Cleavable Linkages for Smart Drug Delivery. Biomacromolecules, 2020, 21, 3342-3352.	5.4	17
32	Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer. Journal of Controlled Release, 2020, 324, 482-492.	9.9	16
33	Disulfide bond-conjugated dual PEGylated siRNAs for prolonged multiple gene silencing. Biomaterials, 2013, 34, 6930-6937.	11.4	13
34	Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes. International Journal of Nanomedicine, 2017, Volume 12, 7603-7611.	6.7	12
35	Magnetically Guided Viral Transduction of Gene-Based Sensitization for Localized Photodynamic Therapy To Overcome Multidrug Resistance in Breast Cancer Cells. Bioconjugate Chemistry, 2017, 28, 1702-1708.	3.6	11
36	Enhanced Targeting and Immune Activation of Tumor Microenvironment by Nanomodified Antiâ€₽D1 in Liver Cancer. Advanced Therapeutics, 2021, 4, 2100048.	3.2	7

ZI-XIAN LIAO

#	Article	IF	CITATIONS
37	Synergistic Effect of Repolarization of M2 to M1 Macrophages Induced by Iron Oxide Nanoparticles Combined with Lactate Oxidase. International Journal of Molecular Sciences, 2021, 22, 13346.	4.1	7
38	Microâ€scale RNA Interference using Iron Oxide Nanoparticleâ€modified Lentivirus. ChemNanoMat, 2018, 4, 98-102.	2.8	5
39	Macrophage Distribution Affected by Virus-Encoded Granulocyte Macrophage Colony Stimulating Factor Combined with Lactate Oxidase. ACS Omega, 2022, 7, 24020-24026.	3.5	4
40	The synthesis and comparison of chondroitin sulfate-modified PDMAEMA with chondroitin sulfate-modified PEI as a potential gene delivery vector. RSC Advances, 2016, 6, 38209-38222.	3.6	3
41	Photothermal Agents: Effective Photothermal Killing of Pathogenic Bacteria by Using Spatially Tunable Colloidal Gels with Nano-Localized Heating Sources (Adv. Funct. Mater. 5/2015). Advanced Functional Materials, 2015, 25, 720-720.	14.9	2
42	Corrigendum to "Environmental pH-sensitive polymeric nano-carriers for targeted tumor delivery―[J. Control. Release 213 (2015) e46–e47]. Journal of Controlled Release, 2015, 218, 1.	9.9	0
43	Environmental pH-sensitive polymeric nano-carriers for targeted tumor delivery. Journal of Controlled Release, 2015, 213, e46-e47.	9.9	0