
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3856524/publications.pdf Version: 2024-02-01

HIDERI ENIORIDA

#	Article	IF	CITATIONS
1	<i>miRâ€145</i> , <i>miRâ€133a</i> and <i>miRâ€133b</i> : Tumorâ€suppressive miRNAs target FSCN1 in esopl squamous cell carcinoma. International Journal of Cancer, 2010, 127, 2804-2814.	nageal	431
2	Identification of novel microRNA targets based on microRNA signatures in bladder cancer. International Journal of Cancer, 2009, 125, 345-352.	5.1	380
3	Genistein Inhibits Prostate Cancer Cell Growth by Targeting miR-34a and Oncogenic HOTAIR. PLoS ONE, 2013, 8, e70372.	2.5	259
4	microRNA-1/133a and microRNA-206/133b clusters: Dysregulation and functional roles in human cancers. Oncotarget, 2012, 3, 9-21.	1.8	218
5	Aberrant expression of microRNAs in bladder cancer. Nature Reviews Urology, 2013, 10, 396-404.	3.8	200
6	MiRâ€96 and miRâ€183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Science, 2011, 102, 522-529.	3.9	185
7	Epigenetic Inactivation of Wnt Inhibitory Factor-1 Plays an Important Role in Bladder Cancer through Aberrant Canonical Wnt/β-Catenin Signaling Pathway. Clinical Cancer Research, 2006, 12, 383-391.	7.0	181
8	Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma. Oncotarget, 2012, 3, 44-57.	1.8	173
9	Combination Analysis of Hypermethylated Wnt-Antagonist Family Genes as a Novel Epigenetic Biomarker Panel for Bladder Cancer Detection. Clinical Cancer Research, 2006, 12, 2109-2116.	7.0	166
10	miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget, 2011, 2, 29-42.	1.8	162
11	The MicroRNA Expression Signature of Bladder Cancer by Deep Sequencing: The Functional Significance of the miR-195/497 Cluster. PLoS ONE, 2014, 9, e84311.	2.5	142
12	The functional significance of miR-1 and miR-133a in renal cell carcinoma. European Journal of Cancer, 2012, 48, 827-836.	2.8	130
13	Tumorâ€suppressive <i>micro<scp>RNA</scp>â€223</i> inhibits cancer cell migration and invasion by targeting <i><scp>ITGA</scp>3/<scp>ITGB</scp>1</i> signaling in prostate cancer. Cancer Science, 2016, 107, 84-94.	3.9	122
14	Tumorâ€suppressive <i>micro<scp>RNA</scp>â€143/145</i> cluster targets hexokinaseâ€2 in renal cell carcinoma. Cancer Science, 2013, 104, 1567-1574.	3.9	118
15	Dual tumorâ€suppressors <i>miRâ€139â€5p</i> and <i>miRâ€139â€3p</i> targeting <i>matrix metalloprotease in bladder cancer. Cancer Science, 2016, 107, 1233-1242.</i>	1 <u>]</u> .s/i>	115
16	The <i>microRNA-23b/27b/24-1</i> cluster is a disease progression marker and tumor suppressor in prostate cancer. Oncotarget, 2014, 5, 7748-7759.	1.8	115
17	Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma. Oncotarget, 2012, 3, 1386-1400.	1.8	112
18	The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. Journal of Human Genetics, 2014, 59, 78-87.	2.3	112

#	Article	IF	CITATIONS
19	Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). Journal of Human Genetics, 2011, 56, 595-601.	2.3	107
20	Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma. International Journal of Oncology, 2013, 43, 1855-1863.	3.3	107
21	MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker. British Journal of Cancer, 2015, 113, 1055-1065.	6.4	107
22	Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma. International Journal of Oncology, 2013, 42, 1523-1532.	3.3	105
23	<i>MicroRNA-218</i> Inhibits Cell Migration and Invasion in Renal Cell Carcinoma through Targeting <i>Caveolin-2</i> Involved in Focal Adhesion Pathway. Journal of Urology, 2013, 190, 1059-1068.	0.4	102
24	Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. Journal of Human Genetics, 2012, 57, 691-699.	2.3	97
25	Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2012, 30, 434-443.	1.6	96
26	Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer. International Journal of Oncology, 2014, 45, 401-410.	3.3	93
27	Regulation of <i>UHRF1</i> by dual-strand tumor-suppressor <i>microRNA-145</i> (<i>miR-145-5p</i> and <i>miR-145-3p</i>): inhibition of bladder cancer cell aggressiveness. Oncotarget, 2016, 7, 28460-28487.	1.8	93
28	Functional significance of aberrantly expressed microRNAs in prostate cancer. International Journal of Urology, 2015, 22, 242-252.	1.0	89
29	Tumorâ€suppressive <i>micro<scp>RNA</scp>â€1291</i> directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Science, 2013, 104, 1411-1419.	3.9	87
30	Tumorâ€suppressive <i>micro<scp>RNA</scp>â€135a</i> inhibits cancer cell proliferation by targeting the <i>câ€<scp>MYC</scp></i> oncogene in renal cell carcinoma. Cancer Science, 2013, 104, 304-312.	3.9	87
31	p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer. Biochemical and Biophysical Research Communications, 2006, 339, 790-796.	2.1	85
32	Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. International Journal of Oncology, 2015, 46, 487-496.	3.3	82
33	Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene, 2005, 24, 6765-6772.	5.9	81
34	Tumor suppressive microRNA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. International Journal of Oncology, 2012, 41, 805-817.	3.3	81
35	MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urologic Oncology: Seminars and Original Investigations, 2013, 31, 115-123.	1.6	78
36	Epithelial–mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. Journal of Human Genetics, 2013, 58, 508-516.	2.3	78

#	Article	IF	CITATIONS
37	Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer. Biochemical and Biophysical Research Communications, 2012, 417, 588-593.	2.1	77
38	CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Molecular Carcinogenesis, 2002, 34, 187-198.	2.7	76
39	Tumourâ€suppressive <i>microRNAâ€224</i> inhibits cancer cell migration and invasion via targeting oncogenic <i>TPD52</i> in prostate cancer. FEBS Letters, 2014, 588, 1973-1982.	2.8	76
40	Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. International Journal of Oncology, 2011, 38, 1093-101.	3.3	75
41	The role of microRNAs in bladder cancer. Investigative and Clinical Urology, 2016, 57, S60.	2.0	75
42	miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. International Journal of Oncology, 2011, 39, 13-21.	3.3	73
43	Tumourâ€suppressive <i>microRNAâ€29s</i> directly regulate <i>LOXL2</i> expression and inhibit cancer cell migration and invasion in renal cell carcinoma. FEBS Letters, 2015, 589, 2136-2145.	2.8	66
44	MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer. International Journal of Oncology, 2015, 47, 710-718.	3.3	62
45	Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma. International Journal of Oncology, 2011, 38, 209-17.	3.9	62
46	Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. Journal of Human Genetics, 2015, 60, 53-61.	2.3	61
47	PHGDH as a Key Enzyme for Serine Biosynthesis in HIF2α-Targeting Therapy for Renal Cell Carcinoma. Cancer Research, 2017, 77, 6321-6329.	0.9	60
48	Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. Journal of Human Genetics, 2016, 61, 109-118.	2.3	59
49	microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget, 2017, 8, 20881-20894.	1.8	57
50	Nuclear translocation of ADAMâ€10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Science, 2007, 98, 1720-1726.	3.9	55
51	Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma. International Journal of Oncology, 2016, 48, 450-460.	3.3	55
52	Tumor suppressive microRNA-133a regulates novel targets: Moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. Biochemical and Biophysical Research Communications, 2012, 418, 378-383.	2.1	54
53	Novel oncogenic function of mesoderm development candidate 1 and its regulation by MiR-574-3p in bladder cancer cell lines. International Journal of Oncology, 2012, 40, 951-959.	3.3	52
54	Expression of the Tumor SuppressivemiRNA-23b/27bCluster is a Good Prognostic Marker in Clear Cell Renal Cell Carcinoma. Journal of Urology, 2014, 192, 1822-1830.	0.4	52

#	Article	IF	CITATIONS
55	Tumour-suppressivemicroRNA-24-1inhibits cancer cell proliferation through targetingFOXM1in bladder cancer. FEBS Letters, 2014, 588, 3170-3179.	2.8	52
56	Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. International Journal of Oncology, 2012, 40, 1770-8.	3.3	50
57	Regulation of ITGA3 by the dual-stranded microRNA-199 family as a potential prognostic marker in bladder cancer. British Journal of Cancer, 2017, 116, 1077-1087.	6.4	48
58	Epigenetics in bladder cancer. International Journal of Clinical Oncology, 2008, 13, 298-307.	2.2	47
59	SWAP70, actinâ€binding protein, function as an oncogene targeting tumorâ€suppressive <i>miRâ€145</i> in prostate cancer. Prostate, 2011, 71, 1559-1567.	2.3	47
60	Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-1331± in head and neck squamous cell carcinoma (HNSCC). International Journal of Molecular Medicine, 2011, 27, 345-52.	4.0	46
61	Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. International Journal of Oncology, 2011, 39, 1099-107.	3.3	46
62	Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. International Journal of Oncology, 2012, 40, 1821-30.	3.3	46
63	microRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. International Journal of Oncology, 2014, 44, 2085-2092.	3.3	46
64	Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. International Journal of Oncology, 2012, 40, 185-93.	3.3	40
65	Tumor-suppressive microRNA-206 as a dual inhibitor of MET and EGFR oncogenic signaling in lung squamous cell carcinoma. International Journal of Oncology, 2015, 46, 1039-1050.	3.3	40
66	Association Study of a Functional Variant on ABCG2 Gene with Sunitinib-Induced Severe Adverse Drug Reaction. PLoS ONE, 2016, 11, e0148177.	2.5	39
67	Potential new therapy of Rapalinkâ€1, a new generation mammalian target of rapamycin inhibitor, against sunitinibâ€resistant renal cell carcinoma. Cancer Science, 2020, 111, 1607-1618.	3.9	38
68	Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling. Oncology Reports, 2006, 16, 521-31.	2.6	38
69	<i>MicroRNAâ€205</i> inhibits cancer cell migration and invasion via modulation of <i>centromere protein F</i> regulating pathways in prostate cancer. International Journal of Urology, 2015, 22, 867-877.	1.0	29
70	Increased SKP2 and CKS1 Gene Expression Contributes to the Progression of Human Urothelial Carcinoma. Journal of Urology, 2007, 178, 301-307.	0.4	28
71	Bromodomain protein BRD4 inhibitor JQ1 regulates potential prognostic molecules in advanced renal cell carcinoma. Oncotarget, 2018, 9, 23003-23017.	1.8	28
72	Pembrolizumab versus chemotherapy in recurrent, advanced urothelial cancer in Japanese patients: a subgroup analysis of the phase 3 KEYNOTE-045 trial. International Journal of Clinical Oncology, 2020, 25, 165-174.	2.2	27

#	Article	IF	CITATIONS
73	Reversal of P-Glycoprotein-mediated Paclitaxel Resistance by New Synthetic Isoprenoids in Human Bladder Cancer Cell Line. Japanese Journal of Cancer Research, 2002, 93, 1037-1046.	1.7	24
74	The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer. International Journal of Oncology, 2015, 47, 325-334.	3.3	24
75	Potential tumor‑suppressive role of microRNA‑99a‑3p in sunitinib‑resistant renal cell carcinoma cells through the regulation of RRM2. International Journal of Oncology, 2019, 54, 1759-1770.	3.3	24
76	HRAS as a potential therapeutic target of salirasib RAS inhibitor in bladder cancer. International Journal of Oncology, 2018, 53, 725-736.	3.3	22
77	CpG hypermethylation of human four-and-a-half LIM domains 1 contributes to migration and invasion activity of human bladder cancer. International Journal of Molecular Medicine, 2010, 26, 241-7.	4.0	20
78	Targeting NPL4 via drug repositioning using disulfiram for the treatment of clear cell renal cell carcinoma. PLoS ONE, 2020, 15, e0236119.	2.5	20
79	Oncogenic effects of RAB27B through exosome independent function in renal cell carcinoma including sunitinib-resistant. PLoS ONE, 2020, 15, e0232545.	2.5	19
80	Differential prognostic factors in low―and highâ€burden deÂnovo metastatic hormoneâ€sensitive prostate cancer patients. Cancer Science, 2021, 112, 1524-1533.	3.9	19
81	EHHADH contributes to cisplatin resistance through regulation by tumor-suppressive microRNAs in bladder cancer. BMC Cancer, 2021, 21, 48.	2.6	19
82	Downregulation of microRNA-1274a induces cell apoptosis through regulation of BMPR1B in clear cell renal cell carcinoma. Oncology Reports, 2017, 39, 173-181.	2.6	18
83	Genomeâ€wide transcriptome analysis of fluoroquinolone resistance in clinical isolates of <i>Escherichia coli</i> . International Journal of Urology, 2012, 19, 360-368.	1.0	17
84	Characterization of <i>PHGDH</i> expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation. Molecular Oncology, 2020, 14, 2190-2202.	4.6	17
85	CpG hypermethylation of cellular retinol-binding protein 1 contributes to cell proliferation and migration in bladder cancer. International Journal of Oncology, 2010, 37, 1379-88.	3.3	16
86	Tumor‑suppressive microRNA‑223 targets WDR62 directly in bladder cancer. International Journal of Oncology, 2019, 54, 2222-2236.	3.3	16
87	Enzalutamide versus abiraterone as a first-line endocrine therapy for castration-resistant prostate cancer (ENABLE study for PCa): a study protocol for a multicenter randomized phase III trial. BMC Cancer, 2017, 17, 677.	2.6	15
88	Acute Kidney Injury and Rhabdomyolysis After Protobothrops flavoviridis Bite: A Retrospective Survey of 86 Patients in a Tertiary Care Center. American Journal of Tropical Medicine and Hygiene, 2016, 94, 474-479.	1.4	14
89	A new risk stratification model for intravesical recurrence, disease progression, and cancer-specific death in patients with non-muscle invasive bladder cancer: the J-NICE risk tables. International Journal of Clinical Oncology, 2020, 25, 1364-1376.	2.2	14
90	<i>microRNAâ€99aâ€5p</i> induces cellular senescence in gemcitabineâ€resistant bladder cancer by targeting <i>SMARCD1</i> . Molecular Oncology, 2022, 16, 1329-1346.	4.6	13

#	Article	IF	CITATIONS
91	Immunoadsorption plasmapheresis treatment for the recurrent exacerbation of neuromyelitis optica spectrum disorder with a fluctuating anti-aquaporin-4 antibody level. Journal of Artificial Organs, 2018, 21, 378-382.	0.9	8
92	Novel metastatic burdenâ€stratified risk model in de novo metastatic hormoneâ€sensitive prostate cancer. Cancer Science, 2021, 112, 3616-3626.	3.9	8
93	Radiotherapy plus androgen deprivation therapy for prostateâ€specific antigen persistence in lymph node–positive prostate cancer. Cancer Science, 2022, 113, 2386-2396.	3.9	8
94	A case of latent heterozygous Fabry disease in a female living kidney donor candidate. CEN Case Reports, 2021, 10, 30-34.	0.9	7
95	Anatomical Variations of the Left Renal Vein During Laparoscopic Donor Nephrectomy. Transplantation Proceedings, 2019, 51, 1311-1313.	0.6	6
96	Oncological outcome of neoadjuvant low-dose estramustine plus LHRH agonist/antagonist followed by extended radical prostatectomy for Japanese patients with high-risk localized prostate cancer: a prospective single-arm study. Japanese Journal of Clinical Oncology, 2020, 50, 66-72.	1.3	5
97	Is It Safe to Use the Same Scissors After Accidental Tumor Incision During Partial Nephrectomy? Results of <i>In Vitro</i> and <i>In Vivo</i> Experiments. Journal of Endourology, 2017, 31, 391-395.	2.1	4
98	Efficacy of combined androgen blockade therapy in patients with metastatic hormoneâ€sensitive prostate cancer stratified by tumor burden. International Journal of Urology, 2022, , .	1.0	4
99	Targeting of the glutamine transporter SLC1A5 induces cellular senescence in clear cell renal cell call carcinoma. Biochemical and Biophysical Research Communications, 2022, 611, 99-106.	2.1	4
100	Long-term desensitization for ABO-incompatible living related kidney transplantation recipients with high refractory and rebound anti-blood type antibody: case report. BMC Nephrology, 2018, 19, 254.	1.8	3
101	Oral Propranolol in a Child With Infantile Hemangioma of the Urethra. Urology, 2018, 122, 165-168.	1.0	3
102	Successful Kidney Transplantation Alone With Severe Left Ventricular Systolic Dysfunction of Ejection Fraction 14%: A Case Report. Transplantation Proceedings, 2020, 52, 1919-1923.	0.6	1
103	Site-specific Risk Stratification Models for Postoperative Recurrence and Survival Prediction in Patients with Upper Tract Urothelial Carcinoma Undergoing Radical Nephroureterectomy: Better Stratification for Adjuvant Therapy. European Urology Open Science, 2022, 41, 95-104.	0.4	1
104	microRNA Analysis in Prostate Cancer. , 2018, , 267-291.		0
105	Kidney transplantation with concomitant simple nephrectomy by thoracoabdominal approach for patients with huge autosomal dominant polycystic kidney disease (ADPKD): A case report. Urology Case Reports, 2019, 26, 100973.	0.3	0
106	Significance of preoperative screening of deep vein thrombosis and its indications for patients undergoing urological surgery. Investigative and Clinical Urology, 2021, 62, 166.	2.0	0
107	Clinicopathological features of renal cell carcinoma complicated by ACDK in chronic hemodialysis patients Nihon Toseki Igakkai Zasshi, 2002, 35, 1495-1501.	0.1	0