List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3856465/publications.pdf Version: 2024-02-01

		94269	128067
197	5,133	37	60
papers	citations	h-index	g-index
212	212	212	2815
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Factors Influencing the Câ^'Oâ^'Bond Homolysis of Trialkylhydroxylamines. Macromolecules, 2000, 33, 4403-4410.	2.2	252
2	Living Character of Polymer Chains Prepared via Nitroxide-Mediated Controlled Free-Radical Polymerization of Methyl Methacrylate in the Presence of a Small Amount of Styrene at Low Temperature. Macromolecules, 2006, 39, 8274-8282.	2.2	212
3	Kinetic subtleties of nitroxide mediated polymerization. Chemical Society Reviews, 2011, 40, 2189.	18.7	161
4	Nitroxide-Mediated Polymerization:Â The Pivotal Role of thekdValue of the Initiating Alkoxyamine and the Importance of the Experimental Conditions. Macromolecules, 2006, 39, 5238-5250.	2.2	159
5	Factors Influencing the Câ^'O Bond Homolysis of Alkoxyamines:Â Effects of Hâ^'Bonding and Polar Substituents. Journal of Organic Chemistry, 2001, 66, 1146-1156.	1.7	156
6	First Effective Nitroxide-Mediated Polymerization of Methyl Methacrylate. Macromolecules, 2007, 40, 3108-3114.	2.2	155
7	Polar, Steric, and Stabilization Effects in Alkoxyamines Câ^'ON Bond Homolysis:Â A Multiparameter Analysis. Macromolecules, 2005, 38, 2638-2650.	2.2	148
8	Nitroxide-Mediated Polymerization of Methyl Methacrylate Using an SG1-Based Alkoxyamine: How the Penultimate Effect Could Lead to Uncontrolled and Unliving Polymerization. Macromolecular Chemistry and Physics, 2006, 207, 1278-1288.	1.1	110
9	Reactivity of Phosphorus Centered Radicals. Topics in Current Chemistry, 0, , 43-76.	4.0	104
10	Scavenging of Organic C-Centered Radicals by Nitroxides. Chemical Reviews, 2014, 114, 5011-5056.	23.0	94
11	Radical reaction kinetics during homolysis of N-alkoxyamines: verification of the persistent radical effect. Journal of the Chemical Society Perkin Transactions II, 1998, , 1553-1560.	0.9	92
12	Influence of the Nitroxide Structure on the Homolysis Rate Constant of Alkoxyamines:Â A Taftâ^'Ingold Analysis. Journal of Organic Chemistry, 2003, 68, 7582-7590.	1.7	87
13	Linear-Free Energy Relationships for Modeling Structure–Reactivity Trends in Controlled Radical Polymerization. Macromolecules, 2011, 44, 7568-7583.	2.2	69
14	Design and use ofβ-phosphorus nitroxides and alkoxyamines in controlled/"living―free radical polymerizations. Macromolecular Symposia, 2002, 182, 225-247.	0.4	65
15	Intermolecular radical addition of alkoxyamines onto olefins: An easy access to advanced macromolecular architectures precursors. Polymer, 2007, 48, 5219-5225.	1.8	59
16	Alkoxyamine-Mediated Radical Synthesis of Indolinones and Indolines. Organic Letters, 2003, 5, 4943-4945.	2.4	58
17	Steric and Polar Effects of the Cyclic Nitroxyl Fragment on the Câ^'ON Bond Homolysis Rate Constant. Macromolecules, 2005, 38, 9974-9984.	2.2	58
18	Unexpectedly High Levels of Organic Compounds Released by Indoor Photocatalytic Paints. Environmental Science & Technology, 2018, 52, 11328-11337.	4.6	58

#	Article	IF	CITATIONS
19	Polypropylene degradation: Theoretical and experimental investigations. Polymer Degradation and Stability, 2010, 95, 782-791.	2.7	53
20	Factors Influencing Câ^'ON Bond Homolysis in Alkoxyamines:Â Unexpected Behavior of SG1 (N-(2-methyl-2-propyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-N-oxyl)-Based Alkoxyamines. Journal of Organic Chemistry, 2004, 69, 4925-4930.	1.7	51
21	Lack of Chain Length Effect on the Rate of Homolysis of Polystyryl-SG1 Alkoxyamines. Macromolecules, 2002, 35, 3790-3791.	2.2	50
22	First proton triggered C–ON bond homolysis in alkoxyamines. Chemical Communications, 2011, 47, 4291.	2.2	50
23	Labile alkoxyamines: past, present, and future. Chemical Communications, 2014, 50, 7921-7928.	2.2	50
24	Alkoxyamine C–ON Bond Homolysis: Stereoelectronic Effects. European Journal of Organic Chemistry, 2006, 2006, 1755-1768.	1.2	49
25	Linear Free-Energy Relationships for the Alkyl Radical Affinities of Nitroxides: A Theoretical Study. Macromolecules, 2010, 43, 3728-3743.	2.2	47
26	Chemically Triggered C–ON Bond Homolysis of Alkoxyamines. Quaternization of the Alkyl Fragment. Organic Letters, 2012, 14, 358-361.	2.4	47
27	Hydrogenâ€transfer reaction in nitroxide mediated polymerization of methyl methacrylate: 2,2â€Diphenylâ€3â€phenyliminoâ€2,3â€dihydroindolâ€1â€yloxyl nitroxide (DPAIO) vs. TEMPO. Journal of Polym Science Part A, 2008, 46, 6828-6842.	er2.5	46
28	Synthesis of Highly Labile SG1-Based Alkoxyamines under Photochemical Conditions. Journal of Organic Chemistry, 2008, 73, 4728-4731.	1.7	45
29	Tyrosineâ€Targeted Spin Labeling and EPR Spectroscopy: An Alternative Strategy for Studying Structural Transitions in Proteins. Angewandte Chemie - International Edition, 2011, 50, 9108-9111.	7.2	44
30	Spinâ€Trapping Evidence for the Formation of Alkyl, Alkoxyl, and Alkylperoxyl Radicals in the Reactions of Dialkylzincs with Oxygen. Chemistry - A European Journal, 2011, 17, 1586-1595.	1.7	43
31	Unprecedented plasmon-induced nitroxide-mediated polymerization (PI-NMP): a method for preparation of functional surfaces. Journal of Materials Chemistry A, 2019, 7, 12414-12419.	5.2	42
32	Steric Effects of Ring Substituents on the Decay and Reformation Kinetics of Piperazinone-Based Alkoxyamines. Macromolecules, 2003, 36, 3440-3442.	2.2	40
33	Alkoxyamines of Stable Aromatic Nitroxides: Nï٤¿Ovs. Cï٤¿O Bond Homolysis. Helvetica Chimica Acta, 2006, 89, 2312-2326.	1.0	40
34	Kinetic study of Hâ€atom transfer in imidazolineâ€, imidazolidineâ€, and pyrrolidineâ€based alkoxyamines: Consequences for nitroxideâ€mediated polymerization. Journal of Polymer Science Part A, 2009, 47, 6579-6595.	2.5	39
35	Nazarov reagents and their use in organic synthesis. Tetrahedron, 2013, 69, 8325-8348.	1.0	39
36	Enlarging the Panoply of Site-Directed Spin Labeling Electron Paramagnetic Resonance (SDSL-EPR): Sensitive and Selective Spin-Labeling of Tyrosine Using an Isoindoline-Based Nitroxide. Bioconjugate Chemistry, 2013, 24, 1110-1117.	1.8	39

#	Article	IF	CITATIONS
37	Alkoxyamines: a new family of pro-drugs against cancer. Concept for theranostics. Organic and Biomolecular Chemistry, 2014, 12, 719-723.	1.5	39
38	Development and Application of Spin Traps, Spin Probes, and Spin Labels. Methods in Enzymology, 2015, 563, 365-396.	0.4	39
39	Ozone, chemical reactivity and biological functions. Tetrahedron, 2018, 74, 6221-6261.	1.0	39
40	Role of the Adducted Cation in the Release of Nitroxide End Group of Controlled Polymer in Mass Spectrometry. Macromolecules, 2009, 42, 1849-1859.	2.2	36
41	Synthesis of a series of SG1 2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethylpropyl)aminoxyl] based alkoxyamines, SG1-CH(Me)CO2R, and measurement of the homolysis rate constants of the C?ON bond. Journal of Polymer Science Part A, 2004, 42, 3504-3515.	2.5	35
42	Effect of the Penultimate Unit on the CON Bond Homolysis in SG1â€Based Alkoxyamines. Macromolecular Chemistry and Physics, 2008, 209, 220-224.	1.1	35
43	XPS analysis of PE and EVA samples irradiated at different γ-doses. Applied Surface Science, 2018, 427, 966-972.	3.1	35
44	Nitroxide Bound β-Cyclodextrin: Is There an Inclusion Complex?. Journal of Organic Chemistry, 2006, 71, 7657-7667.	1.7	34
45	Laser Flash Photolysis and CIDNP Studies of Steric Effects on Coupling Rate Constants of Imidazolidine Nitroxide with Carbon-Centered Radicals, Methyl Isobutyrate-2-yl andtert-Butyl Propionate-2-yl⊥. Journal of Organic Chemistry, 2006, 71, 6044-6052.	1.7	34
46	Chemically Triggered C–ON Bond Homolysis in Alkoxyamines. Part 2: DFT Investigation and Application of the pH Effect on NMP. Macromolecular Rapid Communications, 2012, 33, 152-157.	2.0	34
47	Influence of Solvent and Polymer Chain Length on the Hemolysis of SG1-Based Alkoxyamines. ACS Symposium Series, 2003, , 412-423.	0.5	33
48	Long-Range Polar Effect on the C-ON Bond Homolysis in (tert-Butyl[1-(diethylphosphonyl)-2,2-dimethylpropyl]aminoxyl) SG1-Based Alkoxyamines. Collection of Czechoslovak Chemical Communications, 2004, 69, 2223-2238.	1.0	33
49	Reduced sample recovery in liquid chromatography at critical adsorption point of high molar mass polystyrene. European Polymer Journal, 2008, 44, 514-522.	2.6	33
50	FTIR study of ageing of \hat{I}^3 -irradiated biopharmaceutical EVA based film. Polymer Degradation and Stability, 2016, 129, 19-25.	2.7	33
51	α-Phenyl-N-tert-butylnitrone-Type Derivatives Bound to β-Cyclodextrins: Syntheses, Thermokinetics of Self-Inclusion and Application to Superoxide Spin-Trapping. Chemistry - A Éuropean Journal, 2007, 13, 9344-9354.	1.7	32
52	Alkoxyamines: Toward a New Family of Theranostic Agents against Cancer. Molecular Pharmaceutics, 2014, 11, 2412-2419.	2.3	32
53	Switched external magnetic field CIDNP studies of coupling reaction of carbon-centered radicals with TEMPO. Physical Chemistry Chemical Physics, 2004, 6, 2254.	1.3	31
54	Degradation of γ-irradiated polyethylene-ethylene vinyl alcohol-polyethylene multilayer films: An ESR study. Polymer Degradation and Stability, 2015, 122, 169-179.	2.7	31

#	Article	IF	CITATIONS
55	Polystyrene-block-poly(ethylene oxide) from nitroxide mediated polymerization: detection of minor species by coupled chromatographic techniques. Polymer, 2006, 47, 98-106.	1.8	30
56	Can the First Addition of Alkyl Radicals Play a Role in the Fate of NMP?. Macromolecular Chemistry and Physics, 2008, 209, 1345-1357.	1.1	30
57	One year monitoring by FTIR of γ-irradiated multilayer film PE/EVOH/PE. Radiation Physics and Chemistry, 2016, 125, 115-121.	1.4	30
58	Absolute Rate Constants for the Addition of the 1-(tert-Butoxy)carbonylethyl Radical to Alkenes in Solution. Helvetica Chimica Acta, 2001, 84, 2290-2300.	1.0	29
59	Diastereomeric excess upon cleavage and reformation of diastereomeric alkoxyamines. Organic and Biomolecular Chemistry, 2004, 2, 709-715.	1.5	28
60	New Concepts in Molecular Imaging: Non-Invasive MRI Spotting of Proteolysis Using an Overhauser Effect Switch. PLoS ONE, 2009, 4, e5244.	1.1	28
61	Alkoxyamine Re-Formation Reaction. Effects of the Nitroxide Fragment: A Multiparameter Analysis Journal of Organic Chemistry, 2012, 77, 4996-5005.	1.7	28
62	<i>In vivo</i> highâ€resolution 3D Overhauserâ€enhanced MRI in mice at 0.2 T. Contrast Media and Molecular Imaging, 2012, 7, 45-50.	0.4	28
63	Enzymatically Shifting Nitroxides for EPR Spectroscopy and Overhauserâ€Enhanced Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2015, 54, 13379-13384.	7.2	28
64	New Variants of Nitroxide Mediated Polymerization. Polymers, 2020, 12, 1481.	2.0	28
65	PPN-type nitrones: preparation and use of a new series of β-phosphorylated spin-trapping agents â€. Journal of the Chemical Society Perkin Transactions II, 1997, , 2513-2518.	0.9	27
66	SG1 based alkoxyamines as radical initiators for the synthesis of lactones and lactames. Tetrahedron, 2005, 61, 8752-8761.	1.0	27
67	Intramolecular Hydrogen Bonding: The Case ofβ-Phosphorylated Nitroxide (= Aminoxyl) Radical. Helvetica Chimica Acta, 2006, 89, 2119-2132.	1.0	26
68	Dynamics of the intrinsically disordered protein CP12 in its association with GAPDH in the green alga Chlamydomonas reinhardtii: a fuzzy complex. Molecular BioSystems, 2013, 9, 2869.	2.9	26
69	<i>In vivo</i> Overhauserâ€enhanced MRI of proteolytic activity. Contrast Media and Molecular Imaging, 2014, 9, 363-371.	0.4	26
70	Orthogonal Tyrosine and Cysteine Site-Directed Spin Labeling for Dipolar Pulse EPR Spectroscopy on Proteins. Journal of Physical Chemistry Letters, 2017, 8, 4852-4857.	2.1	26
71	Aminomethylation of Michael Acceptors: Complementary Radical and Polar Approaches Mediated by Dialkylzincs. Chemistry - A European Journal, 2012, 18, 3241-3247.	1.7	25
72	Re-formation Reaction of Cyclic Nitroxide-Based Alkoxyamines: Steric and Polar/Stabilization Effects. Helvetica Chimica Acta, 2006, 89, 2330-2340.	1.0	24

#	Article	IF	CITATIONS
73	Chemically triggered C–ON bond homolysis of alkoxyamines. Part 4: solvent effect. Polymer Chemistry, 2012, 3, 2901.	1.9	24
74	EPR Investigation of Zinc/Iodine Exchange between Propargyl Iodides and Diethylzinc: Detection of Propargyl Radical by Spin Trapping. Journal of Organic Chemistry, 2012, 77, 9081-9086.	1.7	24
75	C–ON bond homolysis of alkoxyamines triggered by paramagnetic copper(<scp>ii</scp>) salts. Inorganic Chemistry Frontiers, 2016, 3, 1464-1472.	3.0	24
76	Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization. Russian Chemical Reviews, 2018, 87, 328-349.	2.5	24
77	Tetrathiophosphoric acid tri(1-phenylethyl) ester and1-phenylethyl-diphenylphosphinodithioate as controlled radical polymerization agents. Tetrahedron Letters, 2003, 44, 1227-1229.	0.7	23
78	2,5-Dihydro-1H-imidazole-Based Nitroxides as Prospective Mediators in Living Radical Polymerization. Helvetica Chimica Acta, 2006, 89, 2341-2353.	1.0	23
79	Chemically Triggered C–ON Bond Homolysis of Alkoxyamines. 5. Cybotactic Effect. Journal of Organic Chemistry, 2012, 77, 9634-9640.	1.7	23
80	Hâ€transfer reaction during decomposition of <i>N</i> â€(2â€methylpropyl)― <i>N</i> â€(1â€diethylphosphonoâ€2,2â€dimethylpropyl)â€ <i>N</i> â€oxyl (SG1)â€based alkoxyamines. Journal o Polymer Science Part A, 2013, 51, 1323-1336.	of2.5	23
81	How intramolecular hydrogen bonding (IHB) controls the C–ON bond homolysis in alkoxyamines. Organic and Biomolecular Chemistry, 2017, 15, 8425-8439.	1.5	20
82	Chemically Triggered C–ON Bond Homolysis in Alkoxyamines. 6. Effect of the Counteranion. Journal of Organic Chemistry, 2013, 78, 7754-7757.	1.7	18
83	Smart Control of Nitroxide-Mediated Polymerization Initiators' Reactivity by pH, Complexation with Metals, and Chemical Transformations. Materials, 2019, 12, 688.	1.3	18
84	Effect of the Carboxylate Salt on the CON Bond Homolysis of SG1â€Based Alkoxyamines. ChemPhysChem, 2008, 9, 272-281.	1.0	17
85	Zinc(II) Hexafluoroacetylacetonate Complexes of Alkoxyamines: NMR and Kinetic Investigations. First Step for a New Way to Prepare Hybrid Materials ChemistrySelect, 2017, 2, 3584-3593.	0.7	17
86	Coordination-Initiated Nitroxide-Mediated Polymerization (CI-NMP). Australian Journal of Chemistry, 2018, 71, 334.	0.5	17
87	Leveled Steric Effect in Alkoxyamines of SG1-Type. Macromolecular Chemistry and Physics, 2004, 205, 973-978.	1.1	16
88	Long-range polar and steric effects in propionate-SG1-type alkoxyamines (SG1-CHMeCOOX): a multiparameter analysis. Journal of Physical Organic Chemistry, 2006, 19, 269-275.	0.9	16
89	Arylsulfanyl radical lifetime in nanostructured silica: dramatic effect of the organic monolayer structure. Chemical Science, 2014, 5, 4716-4723.	3.7	16
90	Trityl-based alkoxyamines as NMP controllers and spin-labels. Polymer Chemistry, 2016, 7, 6490-6499.	1.9	16

#	Article	IF	CITATIONS
91	Smart Alkoxyamines: A New Tool for Smart Applications. Accounts of Chemical Research, 2020, 53, 2828-2840.	7.6	16
92	A Step Towards Highâ€Molecularâ€Weight Living/Controlled Polystyrene Using SG1â€Mediated Polymerization. Macromolecular Reaction Engineering, 2010, 4, 403-414.	0.9	15
93	Reconciliation of pH, conductivity, total organic carbon with carboxylic acids detected by ion chromatography in solution after contact with multilayer films after Î ³ -irradiation. European Journal of Pharmaceutical Sciences, 2018, 117, 216-226.	1.9	15
94	Selective and efficient fluorination of chlorodiazines under solvent-free phase transfer catalysis. Journal of Fluorine Chemistry, 2004, 125, 1847-1851.	0.9	14
95	Crowded Phosphonylated Alkoxyamines with Low Dissociation Temperatures: A Milestone in Nitroxide-Mediated Polymerization. ACS Symposium Series, 2006, , 326-341.	0.5	14
96	C–ON bond homolysis in alkoxyamines. Part 12: the effect of the para-substituent in the 1-phenylethyl fragment. Organic and Biomolecular Chemistry, 2016, 14, 3574-3583.	1.5	14
97	C–ON bond homolysis of alkoxyamines: when too high polarity is detrimental. Organic and Biomolecular Chemistry, 2017, 15, 6167-6176.	1.5	14
98	A DFT study of the hydrogen atom abstraction from 2,4,6-trimethylheptane: A model of peroxidic degradation for syndio polypropylene. Computational and Theoretical Chemistry, 2007, 811, 255-266.	1.5	13
99	Chemically Triggered C–ON Bond Homolysis of Alkoxyamines. 8. Quaternization and Steric Effects. Journal of Organic Chemistry, 2013, 78, 9914-9920.	1.7	13
100	Diversification of EPR signatures in site directed spin labeling using a β-phosphorylated nitroxide. Physical Chemistry Chemical Physics, 2014, 16, 4202.	1.3	13
101	On the structure–control relationship of amide-functionalized SG1-based alkoxyamines for nitroxide-mediated polymerization and conjugation. Polymer Chemistry, 2015, 6, 5693-5704.	1.9	13
102	Enzymatic triggering of C–ON bond homolysis of alkoxyamines. Organic Chemistry Frontiers, 2019, 6, 3663-3672.	2.3	13
103	Synthesis, X-ray Geometry, and Anodic Behavior of Tris[2-(hydroxymethyl)phenyl]phosphane. The Journal of Physical Chemistry, 1996, 100, 4323-4330.	2.9	12
104	Calculated linear free energy relationships in the course of the Suzuki–Miyaura coupling reaction. Tetrahedron, 2014, 70, 2272-2279.	1.0	12
105	Monitoring of the discoloration on γâ€irradiated <scp>PE</scp> and <scp>EVA</scp> films to evaluate antioxidant stability. Journal of Applied Polymer Science, 2018, 135, 46114.	1.3	12
106	Establishing plasmon contribution to chemical reactions: alkoxyamines as a thermal probe. Chemical Science, 2021, 12, 4154-4161.	3.7	12
107	Electron Paramagnetic Resonance Spin Trapping of Glutathiyl Radicals by PBN in the Presence of Cyclodextrins and by PBN Attached to β-Cyclodextrin. Journal of Physical Chemistry B, 2008, 112, 13157-13162.	1.2	11
108	Diasteromeric Effect on the Homolysis of the C–ON Bond in Alkoxyamines: A DFT Investigation of 1,3-Diphenylbutyl-TEMPO. Polymers, 2010, 2, 353-363.	2.0	11

#	Article	IF	CITATIONS
109	Solvent Effect in β-Phosphorylated Nitroxides: Model Nitroxides. Applied Magnetic Resonance, 2015, 46, 1333-1342.	0.6	11
110	Impact of γ-irradiation, ageing and their interactions on multilayer films followed by AComDim. Analytica Chimica Acta, 2017, 981, 11-23.	2.6	11
111	Evaluation of multilayer film stability by Raman spectroscopy after gamma-irradiation sterilization process. Vibrational Spectroscopy, 2018, 96, 52-59.	1.2	11
112	Generation of O ₂ -Permeation Barrier during the Gamma-Irradiation of Polyethylene/Ethylene-Vinyl Alcohol/Polyethylene Multilayer Film. Industrial & Engineering Chemistry Research, 2019, 58, 14115-14123.	1.8	11
113	Beyond common analytical limits of radicals detection using the functional SERS substrates. Sensors and Actuators B: Chemical, 2019, 300, 127015.	4.0	11
114	Design of a Targeting and Oxygen-Independent Platform to Improve Photodynamic Therapy: A Proof of Concept. ACS Applied Bio Materials, 2021, 4, 1330-1339.	2.3	11
115	Role of the alkyl fragment of initiating alkoxyamine in nitroxide mediated polymerization of styrene. Polymer Science - Series B, 2010, 52, 327-338.	0.3	10
116	Hyperfine Coupling Constants of βâ€Phosphorylated Nitroxides: A Tool to Probe the Cybotactic Effect by Electron Paramagnetic Resonance. ChemPhysChem, 2012, 13, 3542-3548.	1.0	10
117	Structural Equilibrium in New Nitroxide-Capped Cyclodextrins: CW and Pulse EPR Study. Journal of Physical Chemistry B, 2013, 117, 8223-8231.	1.2	10
118	C–ON Bond Homolysis of Alkoxyamines, Part 11: Activation of the Nitroxyl Fragment. Journal of Organic Chemistry, 2016, 81, 1981-1988.	1.7	10
119	Enthalpy of Combustion on <i>n</i> â€Alkanes. Quantum Chemical Calculations up to <i>n</i> â€C ₆₀ H ₁₂₂ and Power Law Distributions. ChemistrySelect, 2018, 3, 9113-9120.	0.7	10
120	An elastase activity reporter for Electronic Paramagnetic Resonance (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI) as a line-shifting nitroxide. Free Radical Biology and Medicine, 2018, 126, 101-112.	1.3	10
121	Chemical modifications of imidazole-containing alkoxyamines increase C–ON bond homolysis rate: Effects on their cytotoxic properties in glioblastoma cells. Bioorganic and Medicinal Chemistry, 2019, 27, 1942-1951.	1.4	10
122	An enzymatic acetal/hemiacetal conversion for the physiological temperature activation of the alkoxyamine C–ON bond homolysis. Organic Chemistry Frontiers, 2020, 7, 2916-2924.	2.3	10
123	Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy. Polymers, 2021, 13, 1451.	2.0	10
124	EPR, NMR, and Thermodynamic Evidences for Forced Nuclear Spin–Electron Spin Interactions in the Case of 1-Phenyl-2-Methylpropyl-1,1-Dimethyl-2-Nitroxide (TIPNO) Attached to Permethylated β-Cyclodextrin. Applied Magnetic Resonance, 2009, 36, 181-194.	0.6	9
125	Chemically Induced Dynamic Nuclear Polarization during the Thermolysis of Alkoxyamines: A New Approach to Detect the Occurrence of H-Transfer Reactions. Polymers, 2010, 2, 364-377.	2.0	9
126	Chemically triggered C–ON bond homolysis in alkoxyamines: regioselectivity and chemoselectivity. Organic and Biomolecular Chemistry, 2013, 11, 7738.	1.5	9

#	Article	IF	CITATIONS
127	Hydrogenâ€Bonding Effects for the C–ON Bond Homolysis and Reformation Reactions of Alkoxyamines. Macromolecular Chemistry and Physics, 2015, 216, 475-488.	1.1	9
128	Design of Wall-Functionalized Hybrid Silicas Containing Diazene Radical Precursors. EPR Investigation of Their Photolysis and Thermolysis. Journal of Physical Chemistry C, 2015, 119, 5434-5439.	1.5	9
129	Products and mechanisms of the heterogeneous reactions of ozone with commonly used pyrethroids in the atmosphere. Science of the Total Environment, 2016, 573, 1287-1293.	3.9	9
130	Selective On/Offâ€Nitroxides as Radical Probes to Investigate Nonâ€radical Enzymatic Activity by Electron Paramagnetic Resonance. Chemistry - A European Journal, 2018, 24, 7615-7619.	1.7	9
131	Alkoxyamines Designed as Potential Drugs against Plasmodium and Schistosoma Parasites. Molecules, 2020, 25, 3838.	1.7	9
132	Effect of gamma irradiation on the oxygen barrier properties in ethylâ€vinyl acetate/ethyleneâ€vinyl alcohol/ethylâ€vinyl acetate multilayer film. Journal of Applied Polymer Science, 2020, 137, 49361.	1.3	9
133	Chapter 2. Kinetic Aspects of Nitroxide Mediated Polymerization. RSC Polymer Chemistry Series, 2015, , 45-113.	0.1	9
134	One-year ageing FTIR monitoring of PE/EVOH/PE film after gamma or electron beam irradiation. Polymer Degradation and Stability, 2022, 195, 109790.	2.7	9
135	Is Experimental Evidence Sufficient Enough To Account for the Stabilization Effect of Bisnitroxide on the Fate of NMP Experiments?. Macromolecules, 2009, 42, 1404-1406.	2.2	8
136	Time-Resolved and Pulse EPR Study of Triplet States of Alkylketones in β-Cyclodextrin. Applied Magnetic Resonance, 2012, 42, 29-40.	0.6	8
137	Identification of chemical species created during γâ€irradiation of antioxidant used in polyethylene and polyethyleneâ€ <scp><i>co</i></scp> â€vinyl acetate multilayer film. Journal of Applied Polymer Science, 2020, 137, 49336.	1.3	8
138	Effects of Fe2+/Fe3+ Binding to Human Frataxin and Its D122Y Variant, as Revealed by Site-Directed Spin Labeling (SDSL) EPR Complemented by Fluorescence and Circular Dichroism Spectroscopies. International Journal of Molecular Sciences, 2020, 21, 9619.	1.8	8
139	Effects of X-ray, electron beam and gamma irradiation on PE/EVOH/PE multilayer film properties. Chemical Communications, 2021, 57, 11049-11051.	2.2	8
140	Nitroxides in host–guest chemistry: 2010–2016. Electron Paramagnetic Resonance, 2016, , 180-235.	0.2	8
141	Direct functionalization of labile alkoxyamines. Tetrahedron Letters, 2012, 53, 4543-4547.	0.7	7
142	Intramolecular proton transfer (IPT) in alkoxyamine: a theoretical investigation. Physical Chemistry Chemical Physics, 2013, 15, 13862.	1.3	7
143	Radical polymerization of radical″abeled monomers: The triarylmethylâ€based radical monomer as an example. Journal of Polymer Science Part A, 2018, 56, 2656-2664.	2.5	7
144	β-Fragmentation of alkoxyl radicals: Natural bond orbital analysis. International Journal of Quantum Chemistry, 2006, 106, 676-685.	1.0	6

#	Article	IF	CITATIONS
145	Chemically triggered C–ON bond homolysis in alkoxyamines. Part 7. Remote polar effect. Journal of Physical Organic Chemistry, 2014, 27, 387-391.	0.9	6
146	Mass spectrometry of nitroxide-terminated poly(4-vinylpyridine): A case of unwanted reactive MALDI. International Journal of Mass Spectrometry, 2016, 405, 50-58.	0.7	6
147	Solvent effect in β-phosphorylated nitroxides. Part 4: detection of traces of water by electron paramagnetic resonance. Organic and Biomolecular Chemistry, 2016, 14, 1288-1292.	1.5	6
148	The β-phosphorus hyperfine coupling constant in nitroxides: 6. Solvent effects in non-cyclic nitroxides. Organic and Biomolecular Chemistry, 2016, 14, 3729-3743.	1.5	6
149	Normal, Leveled, and Enhanced Steric Effects in Alkoxyamines Carrying a β-Phosphorylated Nitroxyl Fragment. Journal of Organic Chemistry, 2017, 82, 5702-5709.	1.7	6
150	The effect of the oxophilic Tb(III) cation on C ON bond homolysis in alkoxyamines. Inorganic Chemistry Communication, 2018, 91, 5-7.	1.8	6
151	How intramolecular coordination bonding (ICB) controls the homolysis of the C–ON bond in alkoxyamines. RSC Advances, 2019, 9, 25776-25789.	1.7	6
152	Power Law Distribution Concerning Absolute Free Energies of Linear Sulfur Chains, Polythiazyls, Polyisoprenes, Linear <i>trans</i> -Polyenes, and Polyynes. Journal of Physical Chemistry A, 2019, 123, 1380-1388.	1.1	6
153	Shifting-Nitroxides to Investigate Enzymatic Hydrolysis of Fatty Acids by Lipases Using Electron Paramagnetic Resonance in Turbid Media. Analytical Chemistry, 2019, 91, 5504-5507.	3.2	6
154	Homolysis/mesolysis of alkoxyamines activated by chemical oxidation and photochemical-triggered radical reactions at room temperature. Organic Chemistry Frontiers, 2021, 8, 6561-6576.	2.3	6
155	Effects of X-Rays, Electron Beam, and Gamma Irradiation on Chemical and Physical Properties of EVA Multilayer Films. Frontiers in Chemistry, 2022, 10, .	1.8	6
156	Intramolecular Hydrogen Bond Reverting the Solvent Effect on Phosphorus Hyperfine Coupling Constants of βâ€Phosphorylated Nitroxides. ChemPhysChem, 2016, 17, 3954-3963.	1.0	5
157	β-Phosphorus hyperfine coupling constant in nitroxides: 5. Solvent effect. RSC Advances, 2016, 6, 5653-5670.	1.7	5
158	Hyperfine coupling constants of β-phosphorylated nitroxides: Subtle interplay between steric strain, hyperconjugation, and dipole-dipole interactions. Tetrahedron, 2017, 73, 3188-3201.	1.0	5
159	Magnetic Resonance Imaging of Protease-Mediated Lung Tissue Inflammation and Injury. ACS Omega, 2021, 6, 15012-15016.	1.6	5
160	Kinetic investigation of thermal and photoinduced homolysis of alkylated verdazyls. Physical Chemistry Chemical Physics, 2020, 22, 21881-21887.	1.3	5
161	Persilylated Phosphoranyl Radicals: The First Persistent Noncyclic Phosphoranyl Radicals. Chemistry - A European Journal, 2006, 12, 7084-7094.	1.7	4
162	The β-phosphorus hyperfine coupling constant in nitroxide: part 3: titration of water by electron paramagnetic resonance. Organic and Biomolecular Chemistry, 2015, 13, 11393-11400.	1.5	4

#	Article	IF	CITATIONS
163	Probing the dynamic properties of two sites simultaneously in a protein–protein interaction process: a SDSL-EPR study. Physical Chemistry Chemical Physics, 2019, 21, 22584-22588.	1.3	4
164	Mapping the scientific research on the gamma irradiated polymers degradation (1975–2018). Radiation Physics and Chemistry, 2020, 168, 108577.	1.4	4
165	Monitoring of Peroxide in Gamma Irradiated EVA Multilayer Film Using Methionine Probe. Polymers, 2020, 12, 3024.	2.0	4
166	Neutrophil Elastase-Activatable Prodrugs Based on an Alkoxyamine Platform to Deliver Alkyl Radicals Cytotoxic to Tumor Cells. Journal of Medicinal Chemistry, 2022, 65, 9253-9266.	2.9	4
167	31P NMR measurement of the homolysis rate constant of the C-ON bond of \hat{l}^2 -phosphorylated alkoxyamines. E-Polymers, 2003, 3, .	1.3	3
168	Absolute Rate Constants for the Addition of the 1-(tert-Butoxy)carbonylethyl Radical onto Cyclic Alkenes in Solution. Helvetica Chimica Acta, 2006, 89, 2327-2329.	1.0	3
169	βâ€Fragmentation of Tertiary Alkoxyl Radicals: G3(MP2)â€RAD and Natural Bond Orbital Investigations. ChemPhysChem, 2012, 13, 703-707.	1.0	3
170	Theoretical modelling of the epoxidation of vinylallenes to give cyclopentenones. Tetrahedron Letters, 2013, 54, 6607-6610.	0.7	3
171	Energetics of the biosynthesis of cyclopentenones from unsaturated fatty acids. Tetrahedron, 2014, 70, 8606-8613.	1.0	3
172	Revised Structure, Total Synthesis, and Absolute Configuration of Kopeolin and Kopeolone. Journal of Organic Chemistry, 2014, 79, 2268-2273.	1.7	3
173	Computational Studies on Intramolecular Cycloadditions of Azidoenynes and Azidobutenenitriles to Give 6 <i>H</i> â€Pyrrolo[1,2â€ <i>c</i>][1,2,3]triazoles and 5 <i>H</i> â€Pyrrolo[1,2â€ <i>d</i>]tetrazoles. Helvetica Chimica Acta, 2015, 98, 1018-1027.	1.0	3
174	Theoretical investigations on the conversions of cyclic polysulfides to acyclic polysulfide diradicals and subsequent reactions of biological interest. Tetrahedron, 2017, 73, 3492-3496.	1.0	3
175	Investigations at the Product, Macromolecular, and Molecular Level of the Physical and Chemical Properties of a γ-Irradiated Multilayer EVA/EVOH/EVA Film: Comprehensive Analysis and Mechanistic Insights. Polymers, 2021, 13, 2671.	2.0	3
176	A Combined Spectroscopic and In Silico Approach to Evaluate the Interaction of Human Frataxin with Mitochondrial Superoxide Dismutase. Biomedicines, 2021, 9, 1763.	1.4	3
177	Imidazolineâ€ <i>N</i> â€oxyl: A DFT Study of Its Protonation Reaction. ChemPhysChem, 2009, 10, 2419-2428.	1.0	2
178	Studies of the dehydrodimerization of 2-butanone and 3-pentanone by lead dioxide. Tetrahedron Letters, 2016, 57, 5703-5706.	0.7	2
179	Dual-initiator alkoxyamines with an N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide moiety for preparation of block co-polymers. RSC Advances, 2017, 7, 4993-5001.	1.7	2
180	β-Phosphorus Hyperfine Coupling Constant in Nitroxides: Conformational Effects in 6-Membered Ring Nitroxides. Applied Magnetic Resonance, 2017, 48, 379-406.	0.6	2

#	Article	IF	CITATIONS
181	Enzymatic activity monitoring through Dynamic Nuclear Polarization in Earth magnetic field. Journal of Magnetic Resonance, 2021, 333, 107095.	1.2	2
182	Addition and corrections published 31st October 2013 to 10th July 2014. Chemical Communications, 2014, 50, 9595.	2.2	1
183	Energetics of the biosynthesis of prostanes from arachidonate. Tetrahedron, 2015, 71, 6920-6927.	1.0	1
184	Computational and mechanistic studies of the acylation of cyclopropanes. Tetrahedron Letters, 2016, 57, 1743-1749.	0.7	1
185	Homooligopeptides. Variations of the calculated absolute free energies G/n in function of the number n of amino acids. Computational and Theoretical Chemistry, 2020, 1191, 113012.	1.1	1
186	NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines. Molecules, 2020, 25, 5080.	1.7	1
187	Study of the mechanical behavior of gamma-irradiated single-use bag seals. Food Packaging and Shelf Life, 2020, 26, 100582.	3.3	1
188	Mapping the scientific research on the ionizing radiation impacts on polymers (1975–2019). E-Polymers, 2021, 21, 770-778.	1.3	1
189	Théorie cinétique de l'équilibre chimique. Comptes Rendus Chimie, 2020, 23, 445-503.	0.2	1
190	Monitoring of peroxide in gamma irradiated PE/EVOH/PE multilayer film using methionine probe. Food and Bioproducts Processing, 2022, 132, 226-232.	1.8	1
191	Alkylverdazyls as a Source of Alkyl Radicals for Light-Triggered Cancer Cell Death. Molecular Pharmaceutics, 2022, 19, 354-357.	2.3	1
192	Evolution of the partition coefficients of peroxide initiators during the synthesis of high-impact polystyrene. E-Polymers, 2004, 4, .	1.3	0
193	Influence of the Nitroxide Structure on the Homolysis Rate Constant of Alkoxyamines: A Taft—Ingold Analysis ChemInform, 2004, 35, no.	0.1	0
194	Alkoxyamine-Mediated Radical Synthesis of Indolinones and Indolines ChemInform, 2004, 35, no.	0.1	0
195	Selective and Efficient Fluorination of Chlorodiazines under Solvent-Free Phase Transfer Catalysis ChemInform, 2005, 36, no.	0.1	Ο
196	Part 10: chemically triggered alkoxyamine C–ON bond homolysis in ionic liquid solvents. RSC Advances, 2015, 5, 76660-76665.	1.7	0
197	The chemical thermodynamics and diamagnetism of n-alkanes. Calculations up to n-C110H222 from quantum chemical computations and experimental values. Computational and Theoretical Chemistry, 2022, 1215, 113770.	1.1	0