
Chen Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385464/publications.pdf Version: 2024-02-01

CHEN CIL

#	Article	IF	CITATIONS
1	Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation. Journal of Hazardous Materials, 2017, 321, 344-352.	12.4	165
2	MXene Quantum Dot/Polymer Hybrid Structures with Tunable Electrical Conductance and Resistive Switching for Nonvolatile Memory Devices. Advanced Electronic Materials, 2020, 6, 1900493.	5.1	63
3	Solvent-free synthesis of N-containing polymers with high cross-linking degree to generate N-doped porous carbons for high-efficiency CO2 capture. Chemical Engineering Journal, 2020, 399, 125845.	12.7	42
4	A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation. RSC Advances, 2017, 7, 22234-22242.	3.6	29
5	Facile Synthesis of Ti ₃ C ₂ T _{<i>x</i>} –Poly(vinylpyrrolidone) Nanocomposites for Nonvolatile Memory Devices with Low Switching Voltage. ACS Applied Materials & Interfaces, 2019, 11, 38061-38067.	8.0	28
6	Breathing Metal–Organic Polyhedra Controlled by Light for Carbon Dioxide Capture and Liberation. CCS Chemistry, 2021, 3, 1659-1668.	7.8	28
7	Controllable CO ₂ Capture in Metal–Organic Frameworks: Making Targeted Active Sites Respond to Light. Industrial & Engineering Chemistry Research, 2020, 59, 21894-21900.	3.7	18
8	Hybridization with Ti ₃ C ₂ T <i>_x</i> MXene: An Effective Approach to Boost the Hydrothermal Stability and Catalytic Performance of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 1380-1387.	4.0	17
9	Near-infrared light triggered release of ethane from a photothermal metal-organic framework. Chemical Engineering Journal, 2021, 420, 130490.	12.7	17
10	Tailoring microenvironment of adsorbents to achieve excellent <scp>CO₂</scp> uptakes from wet gases. AICHE Journal, 2020, 66, e16645.	3.6	16
11	Smart adsorbents for CO2 capture: Making strong adsorption sites respond to visible light. Science China Materials, 2021, 64, 383-392.	6.3	14
12	Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture. Chinese Journal of Chemical Engineering, 2022, 42, 104-111.	3.5	10
13	Fabrication of Cu(I)-Functionalized MIL-101(Cr) for Adsorptive Desulfurization: Low-Temperature Controllable Conversion of Cu(II) via Vapor-Induced Reduction. Inorganic Chemistry, 2019, 58, 11085-11090.	4.0	9
14	Significant Decrease in Activation Temperature for the Generation of Strong Basicity: A Strategy of Endowing Supports with Reducibility. Inorganic Chemistry, 2019, 58, 8003-8011.	4.0	9
15	Fabrication of multifunctional integrated catalysts by decorating confined Ag nanoparticles on magnetic nanostirring bars. Journal of Colloid and Interface Science, 2019, 555, 315-322.	9.4	7
16	Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal. Chinese Journal of Chemical Engineering, 2022, 42, 42-48.	3.5	7
17	Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Research, 2022, 15, 2905-2912.	10.4	7
18	Modulating the Activity of Enzyme in Metal–Organic Frameworks Using the Photothermal Effect of Ti ₃ C ₂ Nanosheets. ACS Applied Materials & Interfaces, 2022, 14, 30090-30098.	8.0	7

Chen Gu

#	Article	IF	CITATIONS
19	Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Applied Catalysis A: General, 2019, 584, 117153.	4.3	6
20	Generation of Strong Basicity in Metal–Organic Frameworks: How Do Coordination Solvents Matter?. ACS Applied Materials & Interfaces, 2022, 14, 8058-8065.	8.0	6
21	Low-temperature conversion of base precursor KNO3 on core–shell structured Fe3O4@C: Fabrication of magnetically responsive solid strong bases. Catalysis Today, 2021, 374, 200-207.	4.4	5
22	The Relationship between CO2 Adsorption and Microporous Volume in a Porous Carbon Material. Chemistry and Technology of Fuels and Oils, 2021, 56, 932-940.	0.5	3
23	Generating strongly basic sites on magnetic nano-stirring bars: Multifunctional integrated catalysts for transesterification reaction. Science China Materials, 2022, 65, 2721-2728.	6.3	3