Yong Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385385/publications.pdf

Version: 2024-02-01

225 papers 33,431 citations

87 h-index 180 g-index

232 all docs 232 docs citations

times ranked

232

34707 citing authors

#	Article	IF	Citations
1	An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy and Environmental Science, 2022, 15, 287-295.	15.6	64
2	A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries. Energy and Environmental Science, 2022, 15, 254-264.	15.6	50
3	Highly Active and Durable Air Electrodes for Reversible Protonic Ceramic Electrochemical Cells Enabled by an Efficient Bifunctional Catalyst. Advanced Energy Materials, 2022, 12, .	10.2	57
4	Precision surface modification of solid oxide fuel cells <i>via</i> layer-by-layer surface sol–gel deposition. Journal of Materials Chemistry A, 2022, 10, 8798-8806.	5.2	10
5	Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nature Communications, 2022, 13, 2207.	5. 8	65
6	A Nonstoichiometric Niobium Oxide/Graphite Composite for Fastâ€Charge Lithiumâ€lon Batteries. Small, 2022, 18, .	5.2	13
7	Critical role of acceptor dopants in designing highly stable and compatible proton-conducting electrolytes for reversible solid oxide cells. Energy and Environmental Science, 2022, 15, 2992-3003.	15.6	20
8	A Singleâ€Atom Feâ€Nâ€C Catalyst with Ultrahigh Utilization of Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, .	5.2	38
9	Effect of surface hydroxyls and porous nanostructured sensors integrated for SERS monitoring and efficient removal of organic pollutants. Applied Surface Science, 2022, 601, 154123.	3.1	7
10	Enhancing Oxygen Reduction Activity and Cr Tolerance of Solid Oxide Fuel Cell Cathodes by a Multiphase Catalyst Coating. Advanced Functional Materials, 2021, 31, 2100034.	7.8	56
11	Selective recovery of precious metals through photocatalysis. Nature Sustainability, 2021, 4, 618-626.	11.5	188
12	Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nature Catalysis, 2021, 4, 274-283.	16.1	77
13	Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion. Catalysis Today, 2021, 382, 120-129.	2.2	21
14	A highly efficient and durable air electrode for intermediate-temperature reversible solid oxide cells. Applied Catalysis B: Environmental, 2021, 299, 120631.	10.8	37
15	An improved oxygen reduction reaction activity and CO2-tolerance of La0.6Sr0.4Co0.2Fe0.8O3- \hat{l} achieved by a surface modification with barium cobaltite coatings. Journal of Power Sources, 2021, 514, 230573.	4.0	24
16	Promotion of oxygen reduction reaction on a double perovskite electrode by a water-induced surface modification. Energy and Environmental Science, 2021, 14, 1506-1516.	15.6	62
17	Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy, 2021, 90, 106635.	8.2	77
18	Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chemical Society Reviews, 2021, 50, 13646-13691.	18.7	69

#	Article	IF	Citations
19	Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy and Environmental Science, 2020, 13, 3032-3040.	15.6	185
20	Stable Infrared-Emitting Chemical Composition Gradient Quantum Dots for Down-Convertors and Photodetectors. ACS Applied Nano Materials, 2020, 3, 11335-11343.	2.4	3
21	Particle Size and PdO–Support Interactions in PdO/CeO2-γ Al2O3 Catalysts and Effect on Methane Combustion. Catalysts, 2020, 10, 976.	1.6	9
22	Facile Room-Temperature Synthesis of a Highly Active and Robust Single-Crystal Pt Multipod Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49510-49518.	4.0	17
23	Detection of plasmonic behavior in colloidal indium tin oxide films by impedance spectroscopy. MRS Communications, 2020, 10, 278-285.	0.8	3
24	Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nature Communications, 2020, 11, 1062.	5.8	90
25	High-Performance Li-CO ₂ Batteries from Free-Standing, Binder-Free, Bifunctional Three-Dimensional Carbon Catalysts. ACS Energy Letters, 2020, 5, 916-921.	8.8	81
26	Sky-blue iridium complexes with pyrimidine ligands for highly efficient phosphorescent organic light-emitting diodes. New Journal of Chemistry, 2020, 44, 8743-8750.	1.4	12
27	Quantitative nanoscale tracking of oxygen vacancy diffusion inside single ceria grains by in situ transmission electron microscopy. Materials Today, 2020, 38, 24-34.	8.3	23
28	Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nature Communications, 2020, 11, 1907.	5.8	227
29	Domain Structures and PrCo Antisite Point Defects in Double-perovskite PrBaCo2O5+δ. Microscopy and Microanalysis, 2019, 25, 2016-2017.	0.2	0
30	Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler–Nordheim Tunneling. ACS Nano, 2019, 13, 2289-2297.	7.3	11
31	Ion-Exchange Loading Promoted Stability of Platinum Catalysts Supported on Layered Protonated Titanate-Derived Titania Nanoarrays. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21515-21525.	4.0	10
32	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	11,1	119
33	Integrated Energy Devices: 3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970094.	11.1	8
34	3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices. Advanced Materials, 2019, 31, e1805598.	11.1	194
35	High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs. Catalysis Today, 2019, 320, 2-10.	2.2	28
36	Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au–Ag Alloy Frames. ACS Nano, 2018, 12, 298-307.	7.3	96

#	Article	IF	Citations
37	A Highly Efficient Multi-phase Catalyst Dramatically Enhances the Rate of Oxygen Reduction. Joule, 2018, 2, 938-949.	11.7	221
38	An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. Nano Energy, 2018, 47, 474-480.	8.2	76
39	Enhanced performances of Si/CdS heterojunction near-infrared photodetector by the piezo-phototronic effect. Nano Energy, 2018, 44, 311-318.	8.2	54
40	Hydrogen Production: 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton-Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 ŰC (Adv. Sci. 11/2018). Advanced Science, 2018, 5, 1870070.	5.6	5
41	A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nature Energy, 2018, 3, 1042-1050.	19.8	230
42	Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes. Nano Energy, 2018, 53, 666-674.	8.2	112
43	3D Selfâ€Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Protonâ€Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C. Advanced Science, 2018, 5, 1800360.	5.6	72
44	Rational design, synthesis and evaluation of ZnO nanorod array supported Pt:La0.8Sr0.2MnO3 lean NOx traps. Applied Catalysis B: Environmental, 2018, 236, 348-358.	10.8	22
45	A highly active, CO ₂ -tolerant electrode for the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 2458-2466.	15.6	202
46	Domain structures and Prco antisite point defects in double-perovskite PrBaCo2O5+δ and PrBaO.8CaO.2Co2O5+δ. Ultramicroscopy, 2018, 193, 64-70.	0.8	10
47	A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nature Communications, 2017, 8, 14586.	5.8	327
48	Adjusting the band structure and defects of ZnO quantum dots via tin doping. RSC Advances, 2017, 7, 11345-11354.	1.7	35
49	Electrospun Porous Perovskite La _{0.6} Sr _{0.4} Co ₁ _{â€"} <i>_x</i> Nanofibers for Efficient Oxygen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700146.	10 <sub< td=""><td>>374/sub><s< td=""></s<></td></sub<>	>374/sub> <s< td=""></s<>
50	A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Materials, 2017, 7, 32-39.	9.5	157
51	Fabricating and Controlling Silicon Zigzag Nanowires by Diffusion-Controlled Metal-Assisted Chemical Etching Method. Nano Letters, 2017, 17, 4304-4310.	4.5	48
52	A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy and Environmental Science, 2017, 10, 964-971.	15.6	204
53	Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdS _{<i>x</i>} Se _{1â€"<i>x</i>} Nanowires. ACS Photonics, 2017, 4, 2495-2503.	3.2	48
54	Pt–Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction. Nanoscale, 2017, 9, 15107-15114.	2.8	39

#	Article	IF	CITATIONS
55	In-situ Transmission Electron Microscopy Study of Oxygen Vacancy Ordering and Dislocation Annihilation in Undoped and Sm-doped CeO2 Ceramics During Redox Processes. Microscopy and Microanalysis, 2017, 23, 1626-1627.	0.2	O
56	Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect. ACS Nano, 2017, 11, 7118-7125.	7.3	57
57	Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application. Nano Energy, 2017, 31, 183-193.	8.2	124
58	Defects Generation and Surface Evolution of ZnO Nanobelts/Nanowires Under High-energy Electron Beam Irradiation. Microscopy and Microanalysis, 2016, 22, 1486-1487.	0.2	0
59	Piezotronic Effect Modulated Heterojunction Electron Gas in AlGaN/AlN/GaN Heterostructure Microwire. Advanced Materials, 2016, 28, 7234-7242.	11.1	100
60	A neutron scintillator based on transparent nanocrystalline CaF2:Eu glass ceramic. Applied Physics Letters, 2016, 108, .	1.5	29
61	<i>In-situ</i> transmission electron microscopy study of oxygen vacancy ordering and dislocation annihilation in undoped and Sm-doped CeO2 ceramics during redox processes. Journal of Applied Physics, 2016, 120, .	1.1	15
62	<i $>$ In situ $<$ /i $>$ transmission electron microscopy observation of ZnO polar and non-polar surfaces structure evolution under electron beam irradiation. Journal of Applied Physics, 2016, 119, .	1.1	16
63	Perovskite Nanoparticle-Sensitized Ga ₂ O ₃ Nanorod Arrays for CO Detection at High Temperature. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8880-8887.	4.0	65
64	Synthesis and characterization of a BaGdF ₅ :Tb glass ceramic as a nanocomposite scintillator for x-ray imaging. Nanotechnology, 2016, 27, 205203.	1.3	16
65	Medical imaging scintillators from glass-ceramics using mixed rare-earth halides. Optical Materials, 2016, 60, 513-520.	1.7	29
66	Palladium@Platinum Concave Nanocubes with Enhanced Catalytic Activity toward Oxygen Reduction. ChemCatChem, 2016, 8, 3082-3088.	1.8	19
67	A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy, 2016, 26, 90-99.	8.2	93
68	Optoelectronic Properties of Solution Grown ZnO n-p or p-n Core–Shell Nanowire Arrays. ACS Applied Materials & Diterfaces, 2016, 8, 4287-4291.	4.0	42
69	Piezoâ€phototronic Boolean Logic and Computation Using Photon and Strain Dualâ€Gated Nanowire Transistors. Advanced Materials, 2015, 27, 940-947.	11.1	46
70	Temperature Dependence of the Piezophototronic Effect in CdS Nanowires. Advanced Functional Materials, 2015, 25, 5277-5284.	7.8	50
71	Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. ACS Nano, 2015, 9, 6419-6427.	7.3	232
72	Piezoâ€Phototronic UV/Visible Photosensing with Opticalâ€Fiber–Nanowire Hybridized Structures. Advanced Materials, 2015, 27, 1553-1560.	11.1	60

#	Article	IF	Citations
73	Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Science Advances, 2015, 1, e1400198.	4.7	176
74	Quantifying mean inner potential of ZnO nanowires by off-axis electron holography. Micron, 2015, 78, 67-72.	1.1	8
75	Piezotronic Effect in Strain-Gated Transistor of <i>a</i> -Axis GaN Nanobelt. ACS Nano, 2015, 9, 9822-9829.	7.3	43
76	Construction of 3D Pt Catalysts Supported on Co-Doped SnO ₂ Nanourchins for Methanol and Ethanol Electrooxidation. Journal of the Electrochemical Society, 2015, 162, F92-F97.	1.3	9
77	Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO. Journal of Alloys and Compounds, 2015, 625, 90-94.	2.8	43
78	Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy, 2015, 11, 64-70.	8.2	120
79	Pyroelectric-field driven defects diffusion along <i>c</i> -axis in ZnO nanobelts under high-energy electron beam irradiation. Journal of Applied Physics, 2014, 116, .	1.1	16
80	Solution-Derived ZnO Homojunction Nanowire Films on Wearable Substrates for Energy Conversion and Self-Powered Gesture Recognition. Nano Letters, 2014, 14, 6897-6905.	4.5	123
81	Piezoresistive effect in MoO3 nanobelts and its application in strain-enhanced oxygen sensors. Nano Research, 2014, 7, 180-189.	5.8	33
82	Core/Shell Au/CuPt Nanoparticles and Their Dual Electrocatalysis for Both Reduction and Oxidation Reactions. Journal of the American Chemical Society, 2014, 136, 5745-5749.	6.6	255
83	Enhanced electrocatalytic activity on gold nanocrystals enclosed by high-index facets for oxygen reduction. Nano Energy, 2014, 7, 179-188.	8.2	43
84	Self-Illuminating ⁶⁴ Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging. Journal of the American Chemical Society, 2014, 136, 1706-1709.	6.6	142
85	Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO ₂ Nanowires and Fe ₂ O ₃ Nanotubes. Nano Letters, 2014, 14, 731-736.	4.5	1,035
86	Worm-like amorphous MnO2nanowires grown on textiles for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 595-599.	5.2	120
87	Catalyst-Free Heteroepitaxial MOCVD Growth of InAs Nanowires on Si Substrates. Journal of Physical Chemistry C, 2014, 118, 1696-1705.	1.5	38
88	Deriving the three-dimensional structure of ZnO nanowires/nanobelts by scanning transmission electron microscope tomography. Nano Research, 2013, 6, 253-262.	5.8	19
89	Hybrid Composite Ni(OH) ₂ @NiCo ₂ O ₄ Grown on Carbon Fiber Paper for High-Performance Supercapacitors. ACS Applied Materials & Supe	4.0	181
90	Anisotropic core–shell nanocomposites by direct covalent attachment of a side-functionalized poly(3-hexylthiophene) onto ZnO nanowires. Polymer, 2013, 54, 7004-7008.	1.8	9

#	Article	IF	CITATIONS
91	Piezotronic Effect in Flexible Thinâ€film Based Devices. Advanced Materials, 2013, 25, 3371-3379.	11.1	115
92	Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Protocols, 2013, 8, 52-65.	5.5	395
93	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	7.3	781
94	Nanogenerator based on zinc blende CdTe micro/nanowires. Nano Energy, 2013, 2, 387-393.	8.2	55
95	GaN Nanobelt-Based Strain-Gated Piezotronic Logic Devices and Computation. ACS Nano, 2013, 7, 6403-6409.	7.3	82
96	Piezotronic Effect in Solution-Grown p-Type ZnO Nanowires and Films. Nano Letters, 2013, 13, 2647-2653.	4.5	118
97	Nickel–Cobalt Hydroxide Nanosheets Coated on NiCo ₂ O ₄ Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Letters, 2013, 13, 3135-3139.	4.5	992
98	Enhanced Diffusion of Silver Atoms on the Surface of Nanoparticles at Low Temperatures. Journal of Electronic Packaging, Transactions of the ASME, 2013, 135, .	1.2	4
99	Misfit dislocations in multimetallic core-shelled nanoparticles. Applied Physics Letters, 2012, 100, .	1.5	42
100	Piezo-Phototronic Effect on Electroluminescence Properties of <i>p</i> -Type GaN Thin Films. Nano Letters, 2012, 12, 3851-3856.	4.5	58
101	Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing. Journal of Materials Chemistry, 2012, 22, 9469.	6.7	84
102	Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology, 2012, 23, 055604.	1.3	74
103	Effect of magnetic fields on melt-spun Nd2Fe14B-based ribbons. Journal of Applied Physics, 2012, 111, 07A731.	1.1	14
104	Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors. Nano Letters, 2012, 12, 321-325.	4.5	500
105	Piezo-phototronic Effect Enhanced Visible and Ultraviolet Photodetection Using a ZnO–CdS Core–Shell Micro/nanowire. ACS Nano, 2012, 6, 9229-9236.	7.3	184
106	Phase and shape controlled VO2 nanostructures by antimony doping. Energy and Environmental Science, 2012, 5, 8708.	15.6	159
107	Size effects on elasticity, yielding, and fracture of silver nanowires: <i>In situ</i> experiments. Physical Review B, 2012, 85, .	1.1	266
108	Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires. ACS Nano, 2012, 6, 9366-9372.	7.3	149

#	Article	IF	CITATIONS
109	Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2012, 14, 3381.	1.3	261
110	Reshaping the tips of ZnO nanowires by pulsed laser irradiation. Nano Research, 2012, 5, 412-420.	5.8	20
111	Vertically Aligned CdSe Nanowire Arrays for Energy Harvesting and Piezotronic Devices. ACS Nano, 2012, 6, 6478-6482.	7.3	91
112	Enhanced Cu ₂ S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. Nano Letters, 2012, 12, 3302-3307.	4.5	174
113	High-index facets bound ripple-like ZnO nanobelts grown by chemical vapor deposition. CrystEngComm, 2011, 13, 5052.	1.3	13
114	Crystalline ZnO thin film by hydrothermal growth. Chemical Communications, 2011, 47, 7776.	2.2	45
115	Piezotronic Effect on the Output Voltage of P3HT/ZnO Micro/Nanowire Heterojunction Solar Cells. Nano Letters, 2011, 11, 4812-4817.	4.5	135
116	Lead-Free NaNbO ₃ Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano, 2011, 5, 10041-10046.	7.3	427
117	Evolution of zinc oxide nanostructures through kinetics control. Journal of Materials Chemistry, 2011, 21, 9000.	6.7	34
118	Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2011, 2, 531-539.	3.7	172
119	Synthesis and Characterization of Gold Nanoparticles Coated with Ultrathin and Chemically Inert Dielectric Shells for SHINERS Applications. Applied Spectroscopy, 2011, 65, 620-626.	1.2	52
120	The correlation between radiative surface defect states and high color rendering index from ZnO nanotubes. Nanoscale Research Letters, 2011, 6, 513.	3.1	10
121	ZnO spheres and nanorods formation: their dependence on agitation in solution synthesis. Journal of Nanoparticle Research, 2011, 13, 1689-1696.	0.8	17
122	Controlled synthesis and magnetic properties of hard magnetic CoxC (x=2, 3) nanocrystals. Journal of Magnetism and Magnetic Materials, 2011, 323, 1495-1500.	1.0	52
123	Growth of GaN films with controlled out-of-plane texture on Si wafers. Thin Solid Films, 2011, 519, 3608-3611.	0.8	25
124	Temperature driven in-situ phase transformation of PbWO4 nanobelts. Journal of Applied Physics, 2011, 109, .	1.1	6
125	A General Approach for Fabricating Arcâ€6haped Composite Nanowire Arrays by Pulsed Laser Deposition. Advanced Functional Materials, 2010, 20, 703-707.	7.8	27
126	Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates. Advanced Functional Materials, 2010, 20, 1493-1497.	7.8	38

#	Article	IF	CITATIONS
127	Heteroepitaxial Patterned Growth of Vertically Aligned and Periodically Distributed ZnO Nanowires on GaN Using Laser Interference Ablation. Advanced Functional Materials, 2010, 20, 3484-3489.	7.8	51
128	Externalâ€6train Induced Insulating Phase Transition in VO ₂ Nanobeam and Its Application as Flexible Strain Sensor. Advanced Materials, 2010, 22, 5134-5139.	11.1	223
129	Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464, 392-395.	13.7	3,025
130	Annealing induced nanostructure and photoluminescence property evolution in solution-processed Mg-alloyed ZnO nanowires. Applied Physics Letters, 2010, 97, .	1.5	23
131	Microwave Makes Carbon Nanotubes Less Defective. ACS Nano, 2010, 4, 1716-1722.	7.3	86
132	Atomic Structure of Auâ^'Pd Bimetallic Alloyed Nanoparticles. Journal of the American Chemical Society, 2010, 132, 12480-12486.	6.6	229
133	GaN Nanowire Arrays for High-Output Nanogenerators. Journal of the American Chemical Society, 2010, 132, 4766-4771.	6.6	284
134	Photoconductive enhancement of single ZnO nanowire through localized Schottky effects. Optics Express, 2010, 18, 14836.	1.7	105
135	Rational Synthesis of Heterostructured Nanoparticles with Morphology Control. Journal of the American Chemical Society, 2010, 132, 6524-6529.	6.6	145
136	Titanium dioxide nanoswords with highly reactive, photocatalytic facets. Nanotechnology, 2010, 21, 485601.	1.3	22
137	Structural colors from <i>Morpho peleides</i> butterfly wing scales. Journal of Applied Physics, 2009, 106, .	1.1	47
138	Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Nanotechnology, 2009, 20, 125608.	1.3	64
139	Synthesis and Characterization of Ferroferriborate (Fe ₃ BO ₅) Nanorods. Advanced Functional Materials, 2009, 19, 3146-3150.	7.8	19
140	DNA Binding and Cleavage Activity of Zinc(II) Complex of <i>N</i> , <i>Nâ€2</i> à6€Bis(2â€guanidinoethyl)â€2,6â€pyridinedicarboxamide. Chinese Journal of Chemistry, 2009, 1721-1726.	9 <i>,22</i> 7,	1
141	Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process. Macromolecular Rapid Communications, 2009, 30, 1027-1032.	2.0	18
142	Structures of planar defects in ZnO nanobelts and nanowires. Micron, 2009, 40, 335-342.	1.1	99
143	Sublimationâ€Induced Shape Evolution of Silver Cubes. Small, 2009, 5, 2812-2815.	5.2	57
144	Co-doped Y-shape ZnO nanostructures: Synthesis, structure and properties. Solid State Communications, 2009, 149, 293-296.	0.9	28

#	Article	IF	Citations
145	Dynamic fatigue studies of ZnO nanowires by inâ€situ transmission electron microscopy. Physica Status Solidi - Rapid Research Letters, 2009, 3, 260-262.	1.2	30
146	Patterned Growth of Horizontal ZnO Nanowire Arrays. Journal of the American Chemical Society, 2009, 131, 6670-6671.	6.6	97
147	Growth of Crossed ZnO Nanorod Networks Induced by Polar Substrate Surface. Crystal Growth and Design, 2009, 9, 17-19.	1.4	31
148	A Way To Control the Gold Nanocrystals Size: Using Seeds with Different Sizes and Subjecting Them to Mild Annealing. ACS Nano, 2009, 3, 3622-3628.	7.3	37
149	Phosphorus Doped Zn _{1-<i>x</i>} Mg _{<i>x</i>} O Nanowire Arrays. Nano Letters, 2009, 9, 3877-3882.	4.5	63
150	Tuning the Shape and Catalytic Activity of Fe Nanocrystals from Rhombic Dodecahedra and Tetragonal Bipyramids to Cubes by Electrochemistry. Journal of the American Chemical Society, 2009, 131, 10860-10862.	6.6	94
151	Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls. Journal of Physical Chemistry C, 2009, 113, 1791-1794.	1.5	65
152	Seedless Synthesis and Thermal Decomposition of Single Crystalline Zinc Hydroxystannate Cubes. Crystal Growth and Design, 2009, 9, 4456-4460.	1.4	42
153	Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays. Journal of Materials Chemistry, 2009, 19, 970.	6.7	75
154	Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals. Journal of the American Chemical Society, 2009, 131, 12036-12037.	6.6	170
155	Direct Heteroepitaxy of Vertical InAs Nanowires on Si Substrates for Broad Band Photovoltaics and Photodetection. Nano Letters, 2009, 9, 2926-2934.	4.5	284
156	Electronic Transport in Superlattice-Structured ZnO Nanohelix. Nano Letters, 2009, 9, 137-143.	4.5	72
157	Assemblies of Aligned Magnetotactic Bacteria and Extracted Magnetosomes: What Is the Main Factor Responsible for the Magnetic Anisotropy?. ACS Nano, 2009, 3, 1539-1547.	7.3	85
158	Alternating the Output of a CdS Nanowire Nanogenerator by a Whiteâ€Lightâ€Stimulated Optoelectronic Effect. Advanced Materials, 2008, 20, 3127-3130.	11.1	207
159	Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 2008, 7, 701-706.	13.3	679
160	A New Catalytically Active Colloidal Platinum Nanocatalyst:  The Multiarmed Nanostar Single Crystal. Journal of the American Chemical Society, 2008, 130, 4590-4591.	6.6	269
161	Luminescent and Raman Active Silver Nanoparticles with Polycrystalline Structure. Journal of the American Chemical Society, 2008, 130, 10472-10473.	6.6	119
162	Growth of Vertically Aligned ZnO Nanobelt Arrays on GaN Substrate. Journal of Physical Chemistry C, 2008, 112, 18935-18937.	1.5	35

#	Article	IF	Citations
163	Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Nanotechnology, 2008, 19, 355708.	1.3	55
164	Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters, 2008, 92, .	1.5	248
165	Formation of Fe3Pt phase in FePt-based nanocomposite magnets. Journal Physics D: Applied Physics, 2007, 40, 712-716.	1.3	36
166	Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires. Applied Physics Letters, 2007, 90, 153510.	1.5	126
167	Bulk FePt-based nanocomposite magnets with enhanced exchange coupling. Journal of Applied Physics, 2007, 102, 023908.	1.1	52
168	Facets and surface relaxation of tetrahexahedral platinum nanocrystals. Applied Physics Letters, 2007, 91, .	1.5	41
169	Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science, 2007, 316, 732-735.	6.0	2,838
170	Tuning the Thermal Stability of Molecular Precursors for the Nonhydrolytic Synthesis of Magnetic MnFe2O4 Spinel Nanocrystals. Chemistry of Materials, 2007, 19, 4633-4638.	3.2	67
171	"Simulating Synthesis― Ceria Nanosphere Self-Assembly into Nanorods and Framework Architectures. Journal of the American Chemical Society, 2007, 129, 7924-7935.	6.6	58
172	Effect of the Lattice Crystallinity on the Electronâ^Phonon Relaxation Rates in Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 10751-10757.	1.5	94
173	Nanowire Structural Evolution from Fe3 O4 to ϵ-Fe2 O3. Advanced Functional Materials, 2007, 17, 1172-1178.	7.8	100
174	Mismatch Strain Induced Formation of ZnO/ZnS Heterostructured Rings. Advanced Materials, 2007, 19, 2319-2323.	11.1	99
175	Growth of high quality, epitaxial InSb nanowires. Journal of Crystal Growth, 2007, 304, 399-401.	0.7	50
176	Domain structures and superdislocations of La0.7Ca0.3MnO3 thin films grown on SrTiO3 substrates. Journal of Crystal Growth, 2007, 306, 437-443.	0.7	0
177	Profile imaging of reconstructed polar and non-polar surfaces of ZnO. Surface Science, 2007, 601, 425-433.	0.8	45
178	Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Applied Physics Letters, 2006, 88, 203101.	1.5	399
179	PLD-Assisted VLS Growth of Aligned Ferrite Nanorods, Nanowires, and NanobeltsSynthesis, and Properties. Journal of Physical Chemistry B, 2006, 110, 21672-21679.	1.2	123
180	Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres. Science, 2006, 312, 1504-1508.	6.0	570

#	Article	IF	CITATIONS
181	Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assembliesâ€. Journal of Physical Chemistry B, 2006, 110, 25547-25550.	1.2	66
182	Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition:Â Synthesis, Growth Mechanism, and Device Application. Journal of Physical Chemistry B, 2006, 110, 10296-10302.	1.2	47
183	Structures of Magnetic Nanoparticles and Their Self-Assembly. , 2006, , 49-74.		O
184	Ordered zinc-vacancy induced Zn0.750x nanophase structure. Solid State Communications, 2006, 138, 390-394.	0.9	12
185	A General Approach to Binary and Ternary Hybrid Nanocrystals. Nano Letters, 2006, 6, 875-881.	4.5	593
186	Hierarchical Structured Nanohelices of ZnS. Angewandte Chemie - International Edition, 2006, 45, 5150-5154.	7.2	95
187	Metal/Semiconductor Core/Shell Nanodisks and Nanotubes. Advanced Functional Materials, 2006, 16, 53-62.	7.8	135
188	Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical Vapor Deposition. Advanced Materials, 2006, 18, 1817-1821.	11.1	57
189	Size-Dependent Chemical and Magnetic Ordering inL10-FePt Nanoparticles. Advanced Materials, 2006, 18, 2984-2988.	11.1	307
190	Translation and orientation domain boundaries in La2/3Ca1/3MnO3. Philosophical Magazine, 2006, 86, 2329-2342.	0.7	3
191	Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology, 2006, 17, 4405-4412.	1.3	49
192	Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science, 2005, 309, 1700-1704.	6.0	835
193	Photonic Crystals Fabricated Using Patterned Nanorod Arrays. Advanced Materials, 2005, 17, 2103-2106.	11.1	92
194	Three-Dimensional Tungsten Oxide Nanowire Networks. Advanced Materials, 2005, 17, 2107-2110.	11.1	325
195	Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth ChemInform, 2005, 36, no.	0.1	0
196	Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices ChemInform, 2005, 36, no.	0.1	0
197	Influence of process variables on electron beam chemical vapor deposition of platinum. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2151.	1.6	27
198	Explosive shock processing of Pr2Fe14B/α–Fe exchange-coupled nanocomposite bulk magnets. Journal of Materials Research, 2005, 20, 599-609.	1.2	13

#	Article	IF	CITATIONS
199	Electron energy-loss spectroscopy study of ZnO nanobelts. Microscopy (Oxford, England), 2005, 54, 287-291.	0.7	28
200	Formation of PbSe Nanocrystals:Â A Growth toward Nanocubes. Journal of Physical Chemistry B, 2005, 109, 19219-19222.	1.2	112
201	Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth. Journal of the American Chemical Society, 2005, 127, 10112-10116.	6.6	230
202	Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of \hat{l}_{\pm} -Fe2O3Nanobelts and Nanowires. Journal of Physical Chemistry B, 2005, 109, 215-220.	1.2	506
203	Grain size dependence of magnetic properties in shock synthesized bulk Pr2Fe14Bâ^α-Fe nanocomposites. Journal of Applied Physics, 2004, 96, 3452-3457.	1.1	19
204	Field-ball milling induced anisotropy in magnetic particles. Journal Physics D: Applied Physics, 2004, 37, L45-L48.	1.3	28
205	Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism. Angewandte Chemie - International Edition, 2004, 43, 5238-5242.	7.2	455
206	Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces. Advanced Functional Materials, 2004, 14, 943-956.	7.8	537
207	Self-Catalysis and Phase Transformation in the Formation of CdSe Nanosaws. Advanced Materials, 2004, 16, 1740-1743.	11.1	54
208	Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chemical Physics Letters, 2004, 398, 32-36.	1.2	108
209	Deformation-Free Single-Crystal Nanohelixes of Polar Nanowires. Nano Letters, 2004, 4, 1309-1312.	4.5	146
210	Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy. Journal of Physical Chemistry B, 2004, 108, 12280-12291.	1.2	165
211	Metalâ^'Semiconductor Znâ^'ZnO Coreâ^'Shell Nanobelts and Nanotubes. Journal of Physical Chemistry B, 2004, 108, 570-574.	1.2	219
212	Interface and defect structures of Zn–ZnO core–shell heteronanobelts. Journal of Applied Physics, 2004, 95, 306-310.	1.1	72
213	Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. Journal of Physical Chemistry B, 2004, 108, 8773-8777.	1.2	295
214	Single-Crystal CdSe Nanosaws. Journal of the American Chemical Society, 2004, 126, 708-709.	6.6	221
215	Controlling the crystallization and magnetic properties of melt-spun Pr2Fe14B/α-Fe nanocomposites by Joule heating. Applied Physics Letters, 2004, 84, 4382-4384.	1.5	21
216	Crystal Orientation-Ordered ZnS Nanowire Bundles. Journal of the American Chemical Society, 2004, 126, 14372-14373.	6.6	119

#	Article	lF	Citations
217	Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science, 2004, 303, 1348-1351.	6.0	1,383
218	Catalystâ^'Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:  A Case of Sn/ZnO. Journal of the American Chemical Society, 2004, 126, 2066-2072.	6.6	208
219	Nanobelt and nanosaw structures of II-VI semiconductors. International Journal of Nanotechnology, 2004, 1, 431.	0.1	57
220	Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst. Nano Letters, 2003, 3, 1315-1320.	4.5	373
221	Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method. Nano Letters, 2003, 3, 1647-1649.	4.5	226
222	Ferroelectric domain structure, domain wall mobility and related fatigue-free behavior in SrBi2Ta2O9. Ferroelectrics, 2001, 251, 165-174.	0.3	3
223	In situTEM observation of the 90° domain wall mobility in Pb(ZrTi)O3ceramics. Ferroelectrics, 2001, 251, 69-76.	0.3	2
224	Effect of uniaxial stress on the polarization of SrBi2Ta2O9 thin films. Applied Physics Letters, 2000, 76, 3103-3105.	1.5	23
225	An Active and Robust Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. ACS Energy Letters, 0, , 1511-1520.	8.8	109