
Chris Langdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Net ecosystem dissolution and respiration dominate metabolic rates at two western Atlantic reef sites. Limnology and Oceanography, 2022, 67, 527-539.	3.1	2
2	Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins. Earth System Science Data, 2021, 13, 2777-2799.	9.9	14
3	Impacts of Stony Coral Tissue Loss Disease (SCTLD) on Coral Community Structure at an Inshore Patch Reef of the Upper Florida Keys Using Photomosaics. Frontiers in Marine Science, 2021, 8, .	2.5	8
4	Controls on surface water carbonate chemistry along North American ocean margins. Nature Communications, 2020, 11, 2691.	12.8	77
5	Seasonal Variations of Carbonate Chemistry at Two Western Atlantic Coral Reefs. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016108.	2.6	12
6	Coral reef pH altered in situ. Nature Ecology and Evolution, 2019, 3, 1380-1381.	7.8	1
7	Two threatened Caribbean coral species have contrasting responses to combined temperature and acidification stress. Limnology and Oceanography, 2018, 63, 2450-2464.	3.1	17
8	Taking the metabolic pulse of the world's coral reefs. PLoS ONE, 2018, 13, e0190872.	2.5	96
9	Source location and food availability determine the growth response of Orbicella faveolata to climate change stressors. Regional Studies in Marine Science, 2017, 10, 107-115.	0.7	4
10	Speciesâ€ s pecific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Global Change Biology, 2017, 23, 1023-1035.	9.5	61
11	Multiple Stressors and Ecological Complexity Require a New Approach to Coral Reef Research. Frontiers in Marine Science, 2016, 3, .	2.5	49
12	The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral <i>T. reniformis</i> under a short-term temperature increase. Limnology and Oceanography, 2016, 61, 89-102.	3.1	46
13	Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009–2010): Evidence for seasonal dissolution. Clobal Biogeochemical Cycles, 2016, 30, 661-688.	4.9	79
14	Environmental controls on daytime net community calcification on a Red Sea reef flat. Coral Reefs, 2016, 35, 697-711.	2.2	11
15	Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda) Tj ETQq1	1 0. <u>78</u> 4314 2.2	4 rggT /Over
16	Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annual Review of Marine Science, 2016, 8, 185-215.	11.6	183
17	Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?. PLoS ONE, 2016, 11, e0164699.	2.5	64
18	Preconditioning to high CO2 exacerbates the response of the Caribbean branching coral Porites porites porites to high temperature stress. Marine Ecology - Progress Series, 2016, 546, 75-84.	1.9	9

#	Article	IF	CITATIONS
19	In-situ measurement of metabolic status in three coral species from the Florida Reef Tract. Regional Studies in Marine Science, 2015, 2, 145-153.	0.7	5
20	Threatened Caribbean Coral Is Able to Mitigate the Adverse Effects of Ocean Acidification on Calcification by Increasing Feeding Rate. PLoS ONE, 2015, 10, e0123394.	2.5	99
21	Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs, 2015, 34, 451-460.	2.2	41
22	Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change, 2015, 5, 207-214.	18.8	265
23	Ocean acidification along the Gulf Coast and East Coast of the USA. Continental Shelf Research, 2015, 98, 54-71.	1.8	96
24	Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform. Coral Reefs, 2014, 33, 979-997.	2.2	34
25	Comparative diel oxygen cycles preceding and during a Karenia bloom in Sarasota Bay, Florida, USA. Harmful Algae, 2014, 38, 95-100.	4.8	7
26	Algal chemical ecology in a changing ocean. Planta Medica, 2014, 80, .	1.3	2
27	Responses of calcifying algae (Halimeda spp.) to ocean acidification: implications for herbivores. Marine Ecology - Progress Series, 2014, 514, 43-56.	1.9	29
28	Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs, 2013, 32, 671-683.	2.2	27
29	Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences, 2013, 10, 6747-6758.	3.3	118
30	A multiâ€ŧracer model approach to estimate reef water residence times. Limnology and Oceanography: Methods, 2012, 10, 1078-1095.	2.0	28
31	Shortâ€ŧerm and seasonal pH, <i>p</i> CO ₂ and saturation state variability in a coralâ€ŧeef ecosystem. Global Biogeochemical Cycles, 2012, 26, .	4.9	56
32	The Pacific oyster, <i>Crassostrea gigas</i> , shows negative correlation to naturally elevated carbon dioxide levels: Implications for nearâ€ŧerm ocean acidification effects. Limnology and Oceanography, 2012, 57, 698-710.	3.1	424
33	Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios. Journal of Experimental Marine Biology and Ecology, 2012, 426-427, 12-17.	1.5	46
34	Productivity of a coral reef using boundary layer and enclosure methods. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	37
35	Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 2011, 1, 165-169.	18.8	856
36	Inorganic carbon dynamics during northern California coastal upwelling. Continental Shelf Research, 2011, 31, 1180-1192.	1.8	55

#	Article	IF	CITATIONS
37	Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biology, 2011, 17, 2478-2487.	9.5	178
38	Ocean acidification compromises recruitment success of the threatened Caribbean coral <i>Acropora palmata</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20400-20404.	7.1	234
39	Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.). Aquatic Toxicology, 2010, 97, 125-133.	4.0	95
40	Effects of elevated <i>p</i> CO ₂ on dissolution of coral carbonates by microbial euendoliths. Global Biogeochemical Cycles, 2009, 23, .	4.9	160
41	Present and future changes in seawater chemistry due to ocean acidification. Geophysical Monograph Series, 2009, , 175-188.	0.1	32
42	O ₂ -MAVS: An instrument for measuring oxygen flux. , 2009, , .		4
43	Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs, 2008, 27, 485-490.	2.2	123
44	Climate variability in the North Pacific thermocline diagnosed from oxygen measurements: An update based on the U.S. CLIVAR/CO ₂ Repeat Hydrography cruises. Global Biogeochemical Cycles, 2008, 22, .	4.9	60
45	Decadal changes in Pacific carbon. Journal of Geophysical Research, 2008, 113, .	3.3	76
46	Ocean Acidification's Effects on Marine Ecosystems and Biogeochemistry: Ocean Carbon and Biogeochemistry Scoping Workshop on Ocean Acidification Research; La Jolla, California, 9–11 October 2007. Eos, 2008, 89, 143.	0.1	6
47	Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO ₂ world. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10450-10455.	7.1	265
48	The Integrated Coral Observing Network: Sensor Solutions for Sensitive Sites. , 2007, , .		6
49	Comment on "Modernâ€age buildup of CO ₂ and its effects on seawater acidity and salinity― by Hugo A. Loáiciga. Geophysical Research Letters, 2007, 34, .	4.0	36
50	ENDOLITHIC MICROFLORA ARE MAJOR PRIMARY PRODUCERS IN DEAD CARBONATE SUBSTRATES OF HAWAIIAN CORAL REEFS1. Journal of Phycology, 2006, 42, 292-303.	2.3	86
51	Effects of elevated p CO2 on epilithic and endolithic metabolism of reef carbonates. Global Change Biology, 2006, 12, 2200-2208.	9.5	40
52	Coral reefs and changing seawater carbonate chemistry. Coastal and Estuarine Studies, 2006, , 73-110.	0.4	129
53	Comment on "Coral reef calcification and climate change: The effect of ocean warming― Geophysical Research Letters, 2005, 32, .	4.0	27
54	Effect of elevated pCO2on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research, 2005, 110, .	3.3	488

#	Article	IF	CITATIONS
55	Changing the way we think about global change research: scaling up in experimental ecosystem science. Global Change Biology, 2004, 10, 393-407.	9.5	126
56	Effect of elevated CO2on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles, 2003, 17, .	4.9	189
57	Summer plankton production and nutrient consumption patterns in the Mertz Glacier Region of East Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 1393-1414.	1.4	57
58	Response from Chris Langdon, Biosphere 2 Center. BioScience, 2002, 52, 463.	4.9	0
59	Factors controlling the rate of CaCO3precipitation on Great Bahama Bank. Global Biogeochemical Cycles, 2001, 15, 589-596.	4.9	38
60	Production-respiration relationships at different timescales within the Biosphere 2 coral reef biome. Limnology and Oceanography, 2001, 46, 1653-1660.	3.1	27
61	Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecology - Progress Series, 2001, 220, 153-162.	1.9	180
62	Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 2000, 14, 639-654.	4.9	496
63	The Biosphere 2 coral reef biome. Ecological Engineering, 1999, 13, 147-172.	3.6	33
64	Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs. Science, 1999, 284, 118-120.	12.6	1,170
65	Diel bio-optical variability observed from moored sensors in the Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 1813-1831.	1.4	26
66	Cytoplasmic and shell fine structure of Tetrapetalon elegans (Polycystinea) and comparisons to Hexacontium spp. with implications for phylogeny and taxonomy of the Spumellarida. Marine Micropaleontology, 1998, 33, 299-307.	1.2	5
67	Seasonal variability of bio-optical and physical properties in the Arabian Sea: October 1994–October 1995. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 2001-2025.	1.4	109
68	Moored instruments weather Arabian Sea monsoons, yield data. Eos, 1997, 78, 117.	0.1	27
69	Monsoonal differences in phytoplankton biomass and production in the Indonesian Seas: tracing vertical mixing using temperature. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 581-592.	1.4	30
70	Respiratory Rate and Effects of Heat Stress in Physarum polycephalum during Transformation from Sclerotium to Plasmodium. Archiv Für Protistenkunde, 1996, 147, 93-99.	0.8	0
71	Primary production, water column changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed Layers site (59°N, 21°W) in the northeast Atlantic Ocean. Journal of Geophysical Research, 1995, 100, 6633.	3.3	60
72	Measurements of net and gross O2production, dark O2respiration, and14C assimilation at the Marine Light-Mixed Layers site (59ŰN, 21ŰW) in the northeast Atlantic Ocean. Journal of Geophysical Research, 1995, 100, 6645.	3.3	26

#	Article	IF	CITATIONS
73	Water column dynamics of dissolved inorganic carbon (DIC), nitrogen and O2 on Georges Bank during April, 1990. Continental Shelf Research, 1994, 14, 765-789.	1.8	19
74	Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature, 1993, 363, 248-250.	27.8	323
75	Diurnal variation in surface pCO2 and O2 at 60°N, 20°W in the North Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 1993, 40, 409-422.	1.4	55
76	Seasonal variability of bioâ€optical and physical properties in the Sargasso Sea. Journal of Geophysical Research, 1993, 98, 865-898.	3.3	58
77	Gas transfer experiment on Georges Bank using two volatile deliberate tracers. Journal of Geophysical Research, 1993, 98, 20237-20248.	3.3	110
78	Estimation of seasonal primary production from moored optical sensors in the Sargasso Sea. Journal of Geophysical Research, 1992, 97, 7399-7412.	3.3	38
79	Concurrent high resolution bioâ€optical and physical time series observations in the Sargasso Sea during the spring of 1987. Journal of Geophysical Research, 1991, 96, 8643-8663.	3.3	58
80	Time series observations of bio-optical properties in the upper layer of the Sargasso Sea. , 1990, 1302, 202.		4
81	Diel variations of bio-optical properties in the Sargasso Sea. , 1990, 1302, 214.		11
82	Rates of respiration in the light measured in marine phytoplankton using an 18O isotope-labelling technique. Journal of Experimental Marine Biology and Ecology, 1989, 129, 95-120.	1.5	83
83	On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. II. A general review. Journal of Plankton Research, 1988, 10, 1291-1312.	1.8	186
84	A comparison of four methods for determining planktonic community production1. Limnology and Oceanography, 1987, 32, 1085-1098.	3.1	221
85	Short-term changes in the biology of a Gulf Stream warm-core ring: Phytoplankton biomass and productivity1. Limnology and Oceanography, 1987, 32, 919-928.	3.1	31
86	On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis. Journal of Plankton Research, 1987, 9, 459-482.	1.8	113
87	Particulate matter production and consumption in deep mixed layers: observations in a warm-core ring. Deep-sea Research Part A, Oceanographic Research Papers, 1986, 33, 1813-1841.	1.5	56
88	Distribution and composition of biogenic particulate matter in a Gulf Stream warm-core ring. Deep-sea Research Part A, Oceanographic Research Papers, 1985, 32, 1347-1369.	1.5	48
89	Seasonal variations in the phytoplankton biomass and productivity of a warm-core Gulf Stream ring. Deep-sea Research Part A, Oceanographic Research Papers, 1985, 32, 1287-1300.	1.5	44
90	Dissolved oxygen monitoring system using a pulsed electrode: design, performance, and evoluation. Deep-sea Research Part A, Oceanographic Research Papers, 1984, 31, 1357-1367.	1.5	60

0

#	Article	IF	CITATIONS
91	Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids In Narragansett Bay. Journal of Plankton Research, 1984, 6, 859-868.	1.8	299

92 Description of conversion of an EG&G VMCM into a MVMS (multi-variable moored sensor). , 0, , .