## Herman B Scholthof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852568/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | PLANT VIRUS GENE VECTORS FOR TRANSIENT EXPRESSION OF FOREIGN PROTEINS IN PLANTS. Annual Review of Phytopathology, 1996, 34, 299-323.                                                                                                                         | 7.8  | 252       |
| 2  | Plant virus transport: motions of functional equivalence. Trends in Plant Science, 2005, 10, 376-382.                                                                                                                                                        | 8.8  | 182       |
| 3  | Tomato Bushy Stunt Virus Spread Is Regulated by Two Nested Genes That Function in Cell-to-Cell<br>Movement and Host-Dependent Systemic Invasion. Virology, 1995, 213, 425-438.                                                                               | 2.4  | 169       |
| 4  | The Capsid Protein Gene of Tomato Bushy Stunt Virus Is Dispensable for Systemic Movement and Can Be<br>Replaced for Localized Expression of Foreign Genes. Molecular Plant-Microbe Interactions, 1993, 6,<br>309.                                            | 2.6  | 150       |
| 5  | Tombusvirus P19-Mediated Suppression of Virus-Induced Gene Silencing Is Controlled by Genetic and<br>Dosage Features That Influence Pathogenicity. Molecular Plant-Microbe Interactions, 2002, 15, 269-280.                                                  | 2.6  | 148       |
| 6  | Identification of an <i>ARGONAUTE</i> for Antiviral RNA Silencing in <i>Nicotiana benthamiana</i> Â Â Â Â.<br>Plant Physiology, 2011, 156, 1548-1555.                                                                                                        | 4.8  | 135       |
| 7  | The Tomato Bushy Stunt Virus Replicase Proteins Are Coordinately Expressed and Membrane<br>Associated. Virology, 1995, 208, 365-369.                                                                                                                         | 2.4  | 124       |
| 8  | The Tombusvirus-encoded P19: from irrelevance to elegance. Nature Reviews Microbiology, 2006, 4, 405-411.                                                                                                                                                    | 28.6 | 123       |
| 9  | Genetic Dissection of Tomato Bushy Stunt Virus p19-Protein-Mediated Host-Dependent Symptom<br>Induction and Systemic Invasion. Virology, 2000, 266, 79-87.                                                                                                   | 2.4  | 107       |
| 10 | Multiplexed Gene Editing and Protein Overexpression Using a <i>Tobacco mosaic virus</i> Viral Vector. Plant Physiology, 2017, 175, 23-35.                                                                                                                    | 4.8  | 86        |
| 11 | RNAi-associated ssRNA-specific ribonucleases in Tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1714-1719. | 7.1  | 77        |
| 12 | Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Seminars in Cell and Developmental Biology, 2009, 20, 1032-1040.                                                                                 | 5.0  | 71        |
| 13 | Restoration of Wild-Type Virus by Double Recombination of Tombusvirus Mutants with a Host<br>Transgene. Molecular Plant-Microbe Interactions, 1999, 12, 153-162.                                                                                             | 2.6  | 66        |
| 14 | Rapid Delivery of Foreign Genes into Plants by Direct Rub-Inoculation with Intact Plasmid DNA of a<br>Tomato Bushy Stunt Virus Gene Vector. Journal of Virology, 1999, 73, 7823-7829.                                                                        | 3.4  | 61        |
| 15 | Biological Relevance of a Stable Biochemical Interaction between the Tombusvirus-Encoded P19 and Short Interfering RNAs. Journal of Virology, 2006, 80, 3000-3008.                                                                                           | 3.4  | 60        |
| 16 | A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants. Virology, 2006, 347, 343-353.                                                                                                                                         | 2.4  | 59        |
| 17 | Improved foreign gene expression in plants using a virusâ€encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnology Journal, 2011, 9, 703-712.                                                                        | 8.3  | 57        |
| 18 | A Novel Plant Homeodomain Protein Interacts in a Functionally Relevant Manner with a Virus<br>Movement Protein. Plant Physiology, 2002, 129, 1521-1532.                                                                                                      | 4.8  | 55        |

HERMAN B SCHOLTHOF

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Plant Virus Vectors 3.0: Transitioning into Synthetic Genomics. Annual Review of Phytopathology, 2019, 57, 211-230.                                                                                                                    | 7.8 | 51        |
| 20 | The Effect of Defective Interfering RNAs on the Accumulation of Tomato Bushy Stunt Virus Proteins and Implications for Disease Attenuation. Virology, 1995, 211, 324-328.                                                              | 2.4 | 45        |
| 21 | The Enigma of pX: A Host-Dependentcis-Acting Element with Variable Effects on Tombusvirus RNA<br>Accumulation. Virology, 1997, 237, 56-65.                                                                                             | 2.4 | 38        |
| 22 | Separate Regions on the Tomato Bushy Stunt Virus p22 Protein Mediate Cell-to-Cell Movement versus<br>Elicitation of Effective Resistance Responses. Molecular Plant-Microbe Interactions, 1999, 12, 285-292.                           | 2.6 | 37        |
| 23 | Biological Activity of Two Tombusvirus Proteins Translated from Nested Genes Is Influenced by<br>Dosage Control via Context-Dependent Leaky Scanning. Molecular Plant-Microbe Interactions, 1999, 12,<br>670-679.                      | 2.6 | 34        |
| 24 | Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses. Virology, 2015, 486, 209-218.                                                                       | 2.4 | 34        |
| 25 | Tomato bushy stunt virus: a resilient model system to study virus-plant interactions. Molecular Plant<br>Pathology, 2005, 6, 491-502.                                                                                                  | 4.2 | 33        |
| 26 | Host-Dependent Recombination of a Tomato bushy stunt virus Coat Protein Mutant Yields Truncated<br>Capsid Subunits That Form Virus-like Complexes Which Benefit Systemic Spread. Virology, 2002, 304,<br>434-442.                      | 2.4 | 32        |
| 27 | The multifunctional plant viral suppressor of gene silencing P19 interacts with itself and an RNA binding host protein. Virology, 2004, 323, 49-58.                                                                                    | 2.4 | 32        |
| 28 | Diverse and Newly Recognized Effects Associated with Short Interfering RNA Binding Site<br>Modifications on the <i>Tomato Bushy Stunt Virus</i> P19 Silencing Suppressor. Journal of Virology,<br>2009, 83, 2188-2200.                 | 3.4 | 30        |
| 29 | AGO2: A New Argonaute Compromising Plant Virus Accumulation. Frontiers in Plant Science, 2011, 2, 112.                                                                                                                                 | 3.6 | 30        |
| 30 | Plant Virus Gene Vectors: Biotechnology Applications in Agriculture and Medicine. , 2002, 24, 67-85.                                                                                                                                   |     | 28        |
| 31 | A newly identified role for Tomato bushy stunt virus P19 in short distance spread. Molecular Plant<br>Pathology, 2003, 4, 67-72.                                                                                                       | 4.2 | 28        |
| 32 | Enhanced Transgene Expression in Sugarcane by Co-Expression of Virus-Encoded RNA Silencing<br>Suppressors. PLoS ONE, 2013, 8, e66046.                                                                                                  | 2.5 | 26        |
| 33 | Heterologous Expression of Viral RNA Interference Suppressors: RISC Management. Plant Physiology, 2007, 145, 1110-1117.                                                                                                                | 4.8 | 23        |
| 34 | Broad-Spectrum Protection against Tombusviruses Elicited by Defective Interfering RNAs in Transgenic<br>Plants. Journal of Virology, 1999, 73, 5070-5078.                                                                              | 3.4 | 19        |
| 35 | Retention of a Small Replicase Gene Segment in Tomato Bushy Stunt Virus Defective RNAs Inhibits Their<br>Helper-Mediated Trans-Accumulation. Virology, 2001, 281, 51-60.                                                               | 2.4 | 18        |
| 36 | <i>Tobacco rattle virus</i> (TRV)-Mediated Silencing of <i>Nicotiana benthamiana ARGONAUTES</i> ( <i>NbAGOs</i> ) Reveals New Antiviral Candidates and Dominant Effects of TRV- <i>NbAGO1</i> .<br>Phytopathology, 2017, 107, 977-987. | 2.2 | 18        |

HERMAN B SCHOLTHOF

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Satellite panicum mosaic virus coat protein enhances the performance of plant virus gene vectors.<br>Virology, 2010, 396, 37-46.                                                                   | 2.4 | 17        |
| 38 | An antiviral RISC isolated from Tobacco rattle virus-infected plants. Virology, 2011, 412, 117-124.                                                                                                | 2.4 | 16        |
| 39 | Differential requirements for Tombusvirus coat protein and P19 in plants following leaf versus root<br>inoculation. Virology, 2013, 439, 89-96.                                                    | 2.4 | 16        |
| 40 | RNA silencing suppressor-influenced performance of a virus vector delivering both guide RNA and<br>Cas9 for CRISPR gene editing. Scientific Reports, 2021, 11, 6769.                               | 3.3 | 16        |
| 41 | Effects of inactivation of the coat protein and movement genes of Tomato bushy stunt virus on early accumulation of genomic and subgenomic RNAs. Journal of General Virology, 2001, 82, 3107-3114. | 2.9 | 16        |
| 42 | Biological Chemistry of Virus-Encoded Suppressors of RNA Silencing: An Overview. Methods in<br>Molecular Biology, 2012, 894, 39-56.                                                                | 0.9 | 14        |
| 43 | Tombusvirus-based vector systems to permit over-expression of genes or that serve as sensors of antiviral RNA silencing in plants. Virology, 2014, 452-453, 159-165.                               | 2.4 | 11        |
| 44 | Host-Specific Generation and Maintenance of Tomato bushy stunt virus Defective Interfering RNAs.<br>Molecular Plant-Microbe Interactions, 2004, 17, 195-201.                                       | 2.6 | 10        |
| 45 | Native Processing of Single Guide RNA Transcripts to Create Catalytic Cas9/Single Guide RNA<br>Complexes in Planta. Plant Physiology, 2020, 184, 1194-1206.                                        | 4.8 | 9         |
| 46 | Molecular Plant-Microbe Interactions That Cut the Mustard: Fig. 1 Plant Physiology, 2001, 127, 1476-1483.                                                                                          | 4.8 | 8         |
| 47 | Using Vectors Derived from Tomato Bushy Stunt Virus (TBSV) and TBSV Defective Interfering RNAs<br>(DIs). Current Protocols in Microbiology, 2007, 7, Unit 161.4.                                   | 6.5 | 8         |
| 48 | Host impact on the stability of a plant virus gene vector as measured by a new fluorescent local lesion passaging assay. Journal of Virological Methods, 2012, 179, 289-294.                       | 2.1 | 8         |
| 49 | An in vitro reprogrammable antiviral RISC with size-preferential ribonuclease activity. Virology, 2016, 490, 41-48.                                                                                | 2.4 | 7         |
| 50 | Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors. Frontiers in Plant Science, 2017, 8, 1808.                                      | 3.6 | 4         |
| 51 | Transient expression of a bovine leukemia virus envelope glycoprotein in plants by a recombinant TBSV vector. Journal of Virological Methods, 2018, 255, 1-7.                                      | 2.1 | 4         |