## Jan M Van Deursen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852504/publications.pdf Version: 2024-02-01



IAN M VAN DEUDSEN

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Senescent cells limit p53 activity via multiple mechanisms to remain viable. Nature Communications, 2022, 13, .                                                                  | 12.8 | 16        |
| 2  | E2F7 Is a Potent Inhibitor of Liver Tumor Growth in Adult Mice. Hepatology, 2021, 73, 303-317.                                                                                   | 7.3  | 22        |
| 3  | GAS7 Deficiency Promotes Metastasis in MYCN-Driven Neuroblastoma. Cancer Research, 2021, 81, 2995-3007.                                                                          | 0.9  | 15        |
| 4  | Clonal selection of stable aneuploidies in progenitor cells drives high-prevalence tumorigenesis.<br>Genes and Development, 2021, 35, 1079-1092.                                 | 5.9  | 35        |
| 5  | Senescent cells suppress innate smooth muscle cell repair functions in atherosclerosis. Nature Aging, 2021, 1, 698-714.                                                          | 11.6 | 34        |
| 6  | p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science, 2021, 374, eabb3420.                                                            | 12.6 | 112       |
| 7  | FoxM1 insufficiency hyperactivates Ect2–RhoA–mDia1 signaling to drive cancer. Nature Cancer, 2020, 1,<br>1010-1024.                                                              | 13.2 | 6         |
| 8  | CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nature<br>Metabolism, 2020, 2, 1284-1304.                                            | 11.9 | 157       |
| 9  | Requirement of the Cep57-Cep63 Interaction for Proper Cep152 Recruitment and Centriole Duplication.<br>Molecular and Cellular Biology, 2020, 40, .                               | 2.3  | 25        |
| 10 | Therapy-Induced Senescence Drives Bone Loss. Cancer Research, 2020, 80, 1171-1182.                                                                                               | 0.9  | 69        |
| 11 | Crystallizing BubR1's kinase activity. Cell Research, 2019, 29, 605-606.                                                                                                         | 12.0 | Ο         |
| 12 | FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. Journal of Lipid Research, 2019, 60, 1547-1561. | 4.2  | 19        |
| 13 | Chemotherapy-induced cellular senescence suppresses progression of Notch-driven T-ALL. PLoS ONE, 2019, 14, e0224172.                                                             | 2.5  | 6         |
| 14 | Inhibition of â€~jumping genes' promotes healthy ageing. Nature, 2019, 566, 46-48.                                                                                               | 27.8 | 6         |
| 15 | Pak2 kinase promotes cellular senescence and organismal aging. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13311-13319.          | 7.1  | 30        |
| 16 | Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell<br>Metabolism, 2019, 30, 129-142.e4.                                              | 16.2 | 277       |
| 17 | Ccne1 Overexpression Causes Chromosome Instability in Liver Cells and Liver Tumor Development in Mice. Gastroenterology, 2019, 157, 210-226.e12.                                 | 1.3  | 50        |
| 18 | Senolytic therapies for healthy longevity. Science, 2019, 364, 636-637.                                                                                                          | 12.6 | 162       |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Senescent cells in the development of cardiometabolic disease. Current Opinion in Lipidology, 2019, 30, 177-185.                                                                           | 2.7  | 7         |
| 20 | sFRP3 inhibition improves ageâ€related cellular changes in BubR1 progeroid mice. Aging Cell, 2019, 18,<br>e12899.                                                                          | 6.7  | 15        |
| 21 | BubR1 allelic effects drive phenotypic heterogeneity in mosaic-variegated aneuploidy progeria syndrome. Journal of Clinical Investigation, 2019, 130, 171-188.                             | 8.2  | 8         |
| 22 | P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into<br>Tumor-Promoting Myofibroblasts. Gastroenterology, 2018, 154, 2209-2221.e14.                 | 1.3  | 136       |
| 23 | L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage. Nature Cell Biology, 2018, 20, 455-464.                             | 10.3 | 84        |
| 24 | The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking. Circulation Research, 2018, 122, 1648-1660. | 4.5  | 94        |
| 25 | Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 29-38.           | 3.6  | 25        |
| 26 | Senescent cells: a therapeutic target for cardiovascular disease. Journal of Clinical Investigation, 2018, 128, 1217-1228.                                                                 | 8.2  | 138       |
| 27 | FAK auto-phosphorylation site tyrosine 397 is required for development but dispensable for normal skin homeostasis. PLoS ONE, 2018, 13, e0200558.                                          | 2.5  | 9         |
| 28 | Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature, 2018, 562, 578-582.                                                                     | 27.8 | 803       |
| 29 | Two-Step Senescence-Focused Cancer Therapies. Trends in Cell Biology, 2018, 28, 723-737.                                                                                                   | 7.9  | 145       |
| 30 | ZNF506-dependent positive feedback loop regulates H2AX signaling after DNA damage. Nature<br>Communications, 2018, 9, 2736.                                                                | 12.8 | 17        |
| 31 | Mosaic-variegated aneuploidy syndrome mutation or haploinsufficiency in Cep57 impairs tumor suppression. Journal of Clinical Investigation, 2018, 128, 3517-3534.                          | 8.2  | 17        |
| 32 | Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice.<br>Gastroenterology, 2017, 152, 1126-1138.e6.                                                      | 1.3  | 109       |
| 33 | Singling Out Chromosome Gains in Tumor Evolution. Cancer Cell, 2017, 31, 165-166.                                                                                                          | 16.8 | 0         |
| 34 | Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 2017, 23, 775-781.             | 30.7 | 994       |
| 35 | Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis.<br>Nucleic Acids Research, 2017, 45, 4564-4576.                                            | 14.5 | 91        |
| 36 | β Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance. Cell<br>Metabolism, 2017, 25, 898-910.e5.                                                      | 16.2 | 149       |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Age-related decline in BubR1 impairs adult hippocampal neurogenesis. Aging Cell, 2017, 16, 598-601.                                                                                                | 6.7  | 31        |
| 38 | Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proceedings of the United States of America, 2017, 114, 3933-3938.                                           | 7.1  | 18        |
| 39 | Cellular senescence in renal ageing and disease. Nature Reviews Nephrology, 2017, 13, 77-89.                                                                                                       | 9.6  | 243       |
| 40 | Mps1 kinase-dependent Sgo2 centromere localisation mediates cohesin protection in mouse oocyte meiosis I. Nature Communications, 2017, 8, 694.                                                     | 12.8 | 43        |
| 41 | LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis. Cancer Cell, 2017, 32, 310-323.e5.                                                                                   | 16.8 | 80        |
| 42 | Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 2017, 16,<br>718-735.                                                                                   | 46.4 | 788       |
| 43 | NF-lºB p65 serine 467 phosphorylation sensitizes mice to weight gain and TNFl̂±-or diet-induced<br>inflammation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1785-1798.   | 4.1  | 9         |
| 44 | Accumulation of 5-oxoproline in myocardial dysfunction and the protective effects of OPLAH. Science<br>Translational Medicine, 2017, 9, .                                                          | 12.4 | 36        |
| 45 | Generation and phenotypic characterization of Pde1a mutant mice. PLoS ONE, 2017, 12, e0181087.                                                                                                     | 2.5  | 29        |
| 46 | BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. ELife, 2016, 5, .                                                                                         | 6.0  | 15        |
| 47 | Aneuploidy in Cancer and Aging. Annual Review of Genetics, 2016, 50, 45-66.                                                                                                                        | 7.6  | 52        |
| 48 | The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.                                          | 9.7  | 140       |
| 49 | Cyclin A2 is an RNA binding protein that controls <i>Mre11</i> mRNA translation. Science, 2016, 353, 1549-1552.                                                                                    | 12.6 | 64        |
| 50 | Deciphering the tumor suppressive mechanisms of Pten. Cell Cycle, 2016, 15, 3329-3330.                                                                                                             | 2.6  | 0         |
| 51 | Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 2016, 354, 472-477.                                                                                        | 12.6 | 824       |
| 52 | Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes.<br>Nature Cell Biology, 2016, 18, 814-821.                                                           | 10.3 | 50        |
| 53 | Overexpression of A kinase interacting protein 1 attenuates myocardial ischaemia/reperfusion injury but does not influence heart failure development. Cardiovascular Research, 2016, 111, 217-226. | 3.8  | 24        |
| 54 | Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes, 2016, 65, 1606-1615.                                                                                               | 0.6  | 185       |

Jan M Van Deursen

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Vascular Cell Senescence Contributes to Blood–Brain Barrier Breakdown. Stroke, 2016, 47, 1068-1077.                                                                                                   | 2.0  | 167       |
| 56 | Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 2016, 530, 184-189.                                                                                                     | 27.8 | 2,016     |
| 57 | Mitotic kinase cascades orchestrating timely disjunction and movement of centrosomes maintain chromosomal stability and prevent cancer. Chromosome Research, 2016, 24, 67-76.                         | 2.2  | 15        |
| 58 | Modulation of Polycystic Kidney Disease Severity by Phosphodiesterase 1 and 3 Subfamilies. Journal of the American Society of Nephrology: JASN, 2016, 27, 1312-1320.                                  | 6.1  | 36        |
| 59 | Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. Journal of Clinical Investigation, 2016, 126, 706-720.                                                    | 8.2  | 91        |
| 60 | Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy. Journal of<br>Clinical Investigation, 2016, 126, 543-559.                                                      | 8.2  | 33        |
| 61 | The progeroid gene BubR1 regulates axon myelination and motor function. Aging, 2016, 8, 2667-2688.                                                                                                    | 3.1  | 23        |
| 62 | Abstract 424: Transintestinal Cholesterol Excretion Can Drive Massive Cholesterol Elimination in<br>Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .                             | 2.4  | 0         |
| 63 | Cardiac <scp>LXR</scp> α protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization. EMBO Molecular Medicine, 2015, 7, 1229-1243.                  | 6.9  | 58        |
| 64 | Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling. Journal of Cell Biology, 2015, 211, 605-617.                                                        | 5.2  | 62        |
| 65 | Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine, 2015, 21, 1424-1435.                                                                               | 30.7 | 1,547     |
| 66 | Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest.<br>Nature Communications, 2015, 6, 6946.                                                               | 12.8 | 73        |
| 67 | Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar<br>ataxia type 23. Brain, 2015, 138, 2537-2552.                                                        | 7.6  | 34        |
| 68 | Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1. Molecular Cell, 2015, 60, 21-34.                                                                                                   | 9.7  | 74        |
| 69 | Activation of the transforming growth factorâ€Î²/SMAD transcriptional pathway underlies a novel<br>tumorâ€promoting role of sulfatase 1 in hepatocellular carcinoma. Hepatology, 2015, 61, 1269-1283. | 7.3  | 47        |
| 70 | Centrosome dynamics as a source of chromosomal instability. Trends in Cell Biology, 2015, 25, 65-73.                                                                                                  | 7.9  | 72        |
| 71 | A Cyclophilin Homology Domain-Independent Role for Nup358 in HIV-1 Infection. PLoS Pathogens, 2014, 10, e1003969.                                                                                     | 4.7  | 43        |
| 72 | Spartan deficiency causes genomic instability and progeroid phenotypes. Nature Communications, 2014, 5, 5744.                                                                                         | 12.8 | 89        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Impact of genomic damage and ageing on stem cell function. Nature Cell Biology, 2014, 16, 201-207.                                                                                                                             | 10.3 | 171       |
| 74 | <scp>SIRT</scp> 2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO Journal, 2014, 33, 1438-1453.                                                                                                                 | 7.8  | 195       |
| 75 | The role of senescent cells in ageing. Nature, 2014, 509, 439-446.                                                                                                                                                             | 27.8 | 1,915     |
| 76 | Cyclin B2 and p53 control proper timing of centrosome separation. Nature Cell Biology, 2014, 16, 535-546.                                                                                                                      | 10.3 | 142       |
| 77 | p300 Acetyltransferase Regulates Androgen Receptor Degradation and PTEN-Deficient Prostate<br>Tumorigenesis. Cancer Research, 2014, 74, 1870-1880.                                                                             | 0.9  | 80        |
| 78 | Senescence and apoptosis: dueling or complementary cell fates?. EMBO Reports, 2014, 15, 1139-1153.                                                                                                                             | 4.5  | 643       |
| 79 | CBP Loss Cooperates with PTEN Haploinsufficiency to Drive Prostate Cancer: Implications for Epigenetic Therapy. Cancer Research, 2014, 74, 2050-2061.                                                                          | 0.9  | 39        |
| 80 | Cardiac Function and Architecture Are Maintained in a Model of Cardiorestricted Overexpression of the Prorenin-Renin Receptor. PLoS ONE, 2014, 9, e89929.                                                                      | 2.5  | 12        |
| 81 | Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan.<br>Nature Cell Biology, 2013, 15, 96-102.                                                                                   | 10.3 | 229       |
| 82 | Aneuploidy in health, disease, and aging. Journal of Cell Biology, 2013, 201, 11-21.                                                                                                                                           | 5.2  | 102       |
| 83 | Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. Journal of Clinical Investigation, 2013, 123, 966-972.                                                                                   | 8.2  | 1,326     |
| 84 | The Epigenetic Regulators CBP and p300 Facilitate Leukemogenesis and Represent Therapeutic Targets In<br>Acute Myeloid Leukemia (AML). Blood, 2013, 122, 3732-3732.                                                            | 1.4  | 0         |
| 85 | Reduced Life- and Healthspan in Mice Carrying a Mono-Allelic BubR1 MVA Mutation. PLoS Genetics, 2012,<br>8, e1003138.                                                                                                          | 3.5  | 52        |
| 86 | Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression. Journal of Cell Biology, 2012, 199, 931-949.                                                                            | 5.2  | 88        |
| 87 | Sgo1 as a "guardian spirit―for preventing colon tumorigenesis. Cell Cycle, 2012, 11, 649-649.                                                                                                                                  | 2.6  | 1         |
| 88 | Expression of wildâ€type and mutant S20G hIAPP in physiologic knockâ€in mouse models fails to induce<br>islet amyloid formation, but induces mild glucose intolerance. Journal of Diabetes Investigation, 2012,<br>3, 138-147. | 2.4  | 9         |
| 89 | CREB1 and CREB-binding protein in striatal medium spiny neurons regulate behavioural responses to psychostimulants. Psychopharmacology, 2012, 219, 699-713.                                                                    | 3.1  | 21        |
| 90 | USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. Journal of Clinical Investigation, 2012, 122, 4362-4374.                                                                              | 8.2  | 144       |

| #   | Article                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479, 232-236.                                                                  | 27.8 | 2,806     |
| 92  | Correction of microtubule–kinetochore attachment errors: Mechanisms and role in tumor suppression. Seminars in Cell and Developmental Biology, 2011, 22, 559-565.               | 5.0  | 12        |
| 93  | Overexpression of Ubiquitin Specific Protease 44 (USP44) Induces Chromosomal Instability and Is<br>Frequently Observed in Human T-Cell Leukemia. PLoS ONE, 2011, 6, e23389.     | 2.5  | 58        |
| 94  | Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. Journal of Cell Biology, 2011, 193, 1049-1064.                              | 5.2  | 161       |
| 95  | Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle, 2011, 10, 3645-3651.                                                            | 2.6  | 23        |
| 96  | Diverse factors are involved in maintaining X chromosome inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16699-16704. | 7.1  | 44        |
| 97  | The Transcriptional Coactivator Cbp Regulates Self-Renewal and Differentiation in Adult<br>Hematopoietic Stem Cells. Molecular and Cellular Biology, 2011, 31, 5046-5060.       | 2.3  | 46        |
| 98  | Ran-dependent docking of importin-β to RanBP2/Nup358 filaments is essential for protein import and cell viability. Journal of Cell Biology, 2011, 194, 597-612.                 | 5.2  | 104       |
| 99  | Epitope-Tagged Pkhd1 Tracks the Processing, Secretion, and Localization of Fibrocystin. Journal of the American Society of Nephrology: JASN, 2011, 22, 2266-2277.               | 6.1  | 67        |
| 100 | Fat tissue, aging, and cellular senescence. Aging Cell, 2010, 9, 667-684.                                                                                                       | 6.7  | 834       |
| 101 | Cdc20 Is Critical for Meiosis I and Fertility of Female Mice. PLoS Genetics, 2010, 6, e1001147.                                                                                 | 3.5  | 88        |
| 102 | Overexpression of the E2 ubiquitin–conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. Journal of Cell Biology, 2010, 188, 83-100.                  | 5.2  | 180       |
| 103 | The ATM–p53 pathway suppresses aneuploidy-induced tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14188-14193.       | 7.1  | 203       |
| 104 | Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis. Journal of Cell<br>Biology, 2010, 191, 313-329.                                            | 5.2  | 53        |
| 105 | Chromosome missegregation causes colon cancer by <i>APC</i> loss of heterozygosity. Cell Cycle, 2010, 9, 1711-1716.                                                             | 2.6  | 28        |
| 106 | CREB Binding Protein Is Required for Both Short-Term and Long-Term Memory Formation. Journal of Neuroscience, 2010, 30, 13066-13077.                                            | 3.6  | 143       |
| 107 | Deleted in breast cancer–1 regulates SIRT1 activity and contributes to high-fat diet–induced liver steatosis in mice. Journal of Clinical Investigation, 2010, 120, 545-558.    | 8.2  | 158       |
| 108 | HIV-1 Rev–binding protein accelerates cellular uptake of iron to drive Notch-induced T cell<br>leukemogenesis in mice. Journal of Clinical Investigation, 2010, 120, 2537-2548. | 8.2  | 15        |

| #   | Article                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Histone Acetyltransferase CBP Is Vital To Demarcate Conventional and Innate CD8 + T-Cell<br>Development. Molecular and Cellular Biology, 2009, 29, 3894-3904.                          | 2.3  | 48        |
| 110 | CAML loss causes anaphase failure and chromosome missegregation. Cell Cycle, 2009, 8, 940-949.                                                                                         | 2.6  | 21        |
| 111 | Induction of Prostatic Intraepithelial Neoplasia and Modulation of Androgen Receptor by ETS Variant<br>1/ETS-Related Protein 81. Cancer Research, 2009, 69, 8102-8110.                 | 0.9  | 76        |
| 112 | Whole Chromosome Instability Caused by Bub1 Insufficiency Drives Tumorigenesis through Tumor Suppressor Gene Loss of Heterozygosity. Cancer Cell, 2009, 16, 475-486.                   | 16.8 | 198       |
| 113 | BubR1 N Terminus Acts as a Soluble Inhibitor of Cyclin B Degradation by APC/CCdc20 in Interphase.<br>Developmental Cell, 2009, 16, 118-131.                                            | 7.0  | 161       |
| 114 | Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature<br>Cell Biology, 2008, 10, 825-836.                                              | 10.3 | 338       |
| 115 | Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nature Cell Biology, 2008, 10, 1076-1082.                              | 10.3 | 290       |
| 116 | Whole chromosome instability and cancer: a complex relationship. Trends in Genetics, 2008, 24, 457-466.                                                                                | 6.7  | 143       |
| 117 | Resolution of Sister Centromeres RequiresÂRanBP2-Mediated SUMOylation of Topoisomerase IIα. Cell, 2008, 133, 103-115.                                                                  | 28.9 | 286       |
| 118 | Nucleoporin Levels Regulate Cell Cycle Progression and Phase-Specific Gene Expression.<br>Developmental Cell, 2008, 15, 657-667.                                                       | 7.0  | 88        |
| 119 | The yin and yang of the Cdkn2a locus in senescence and aging. Cell Cycle, 2008, 7, 2795-2802.                                                                                          | 2.6  | 44        |
| 120 | Direct Interaction between SET8 and Proliferating Cell Nuclear Antigen Couples H4-K20 Methylation with DNA Replication. Journal of Biological Chemistry, 2008, 283, 11073-11077.       | 3.4  | 115       |
| 121 | Smoothelin-B Deficiency Results in Reduced Arterial Contractility, Hypertension, and Cardiac<br>Hypertrophy in Mice. Circulation, 2008, 118, 828-836.                                  | 1.6  | 46        |
| 122 | Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. Journal of Cell Biology, 2007, 179, 255-267.                         | 5.2  | 195       |
| 123 | Aging-Associated Vascular Phenotype in Mutant Mice With Low Levels of BubR1. Stroke, 2007, 38, 1050-1056.                                                                              | 2.0  | 72        |
| 124 | Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiology of Aging, 2007, 28, 921-927.                                                             | 3.1  | 50        |
| 125 | Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1853-1858. | 7.1  | 244       |
| 126 | Rb Loss Causes Cancer by Driving Mitosis Mad. Cancer Cell, 2007, 11, 1-3.                                                                                                              | 16.8 | 50        |

8

Jan M Van Deursen

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | RanBP2/Nup358 is required for Topoisomerase II/alphaâ€mediated DNA decatenation, proper chromosome segregation and tumor suppression. FASEB Journal, 2007, 21, A210.                              | 0.5  | 0         |
| 128 | The Histone Acetyltransferase CBP Is Essential for Conventional T Cell Development Blood, 2007, 110, 2294-2294.                                                                                   | 1.4  | 0         |
| 129 | Ly9 (CD229)-Deficient Mice Exhibit T Cell Defects yet Do Not Share Several Phenotypic Characteristics<br>Associated with SLAM- and SAP-Deficient Mice. Journal of Immunology, 2006, 176, 291-300. | 0.8  | 89        |
| 130 | MDC1 Maintains Genomic Stability by Participating in the Amplification of ATM-Dependent DNA Damage<br>Signals. Molecular Cell, 2006, 21, 187-200.                                                 | 9.7  | 553       |
| 131 | Securin Associates with APCCdh1 in Prometaphase but its Destruction is Delayed by Rae1 and Nup98 until the Metaphase/Anaphase Transition. Cell Cycle, 2006, 5, 366-370.                           | 2.6  | 58        |
| 132 | Chfr is required for tumor suppression and Aurora A regulation. Nature Genetics, 2005, 37, 401-406.                                                                                               | 21.4 | 199       |
| 133 | The Rae1–Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature, 2005, 438, 1036-1039.                                                                                       | 27.8 | 176       |
| 134 | A mouse model of familial oligoasthenoteratozoospermia. Human Reproduction, 2005, 20, 881-893.                                                                                                    | 0.9  | 25        |
| 135 | VSV Disrupts the Rae1/mrnp41 mRNA Nuclear Export Pathway. Molecular Cell, 2005, 17, 93-102.                                                                                                       | 9.7  | 202       |
| 136 | CAML Is a p56Lck-Interacting Protein that Is Required for Thymocyte Development. Immunity, 2005, 23, 139-152.                                                                                     | 14.3 | 33        |
| 137 | The TALE Homeodomain Protein Pbx2 Is Not Essential for Development and Long-Term Survival.<br>Molecular and Cellular Biology, 2004, 24, 5324-5331.                                                | 2.3  | 76        |
| 138 | BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genetics, 2004, 36, 744-749.                                                                | 21.4 | 663       |
| 139 | Gene Targeting in Mouse Embryonic Stem Cells. , 2003, 209, 145-158.                                                                                                                               |      | 6         |
| 140 | CAML Is Required for Efficient EGF Receptor Recycling. Developmental Cell, 2003, 5, 245-256.                                                                                                      | 7.0  | 64        |
| 141 | Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. Journal of Cell Biology, 2003, 160, 341-353.                                    | 5.2  | 337       |
| 142 | p53 Binding Protein 53BP1 Is Required for DNA Damage Responses and Tumor Suppression in Mice.<br>Molecular and Cellular Biology, 2003, 23, 2556-2563.                                             | 2.3  | 365       |
| 143 | The Role of Mitotic Checkpoint in Maintaining Genomic Stability. Current Topics in Developmental Biology, 2003, 58, 27-51.                                                                        | 2.2  | 8         |
| 144 | A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature, 2002, 419, 738-743.                                                                            | 27.8 | 180       |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Regulation of the T-Independent Humoral Response by TACI. Immunity, 2001, 14, 573-582.                                                                                                       | 14.3 | 470       |
| 146 | <i>INK4d</i> -Deficient Mice Are Fertile Despite Testicular Atrophy. Molecular and Cellular Biology, 2000, 20, 372-378.                                                                      | 2.3  | 129       |
| 147 | Stat5 Is Required for IL-2-Induced Cell Cycle Progression of Peripheral T Cells. Immunity, 1999, 10, 249-259.                                                                                | 14.3 | 530       |
| 148 | Jak2 Is Essential for Signaling through a Variety of Cytokine Receptors. Cell, 1998, 93, 385-395.                                                                                            | 28.9 | 987       |
| 149 | Stat5a and Stat5b Proteins Have Essential and Nonessential, or Redundant, Roles in Cytokine<br>Responses. Cell, 1998, 93, 841-850.                                                           | 28.9 | 1,181     |
| 150 | Altered Ca2+ Responses in Muscles with Combined Mitochondrial and Cytosolic Creatine Kinase Deficiencies. Cell, 1997, 89, 93-103.                                                            | 28.9 | 250       |
| 151 | Use of gene targeting for compromising energy homeostasis in neuro-muscular tissues: The role of sarcomeric mitochondrial creatine kinase. Journal of Neuroscience Methods, 1997, 71, 29-41. | 2.5  | 47        |
| 152 | AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, ls Essential for Normal<br>Fetal Liver Hematopoiesis. Cell, 1996, 84, 321-330.                                    | 28.9 | 1,789     |
| 153 | Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature, 1996, 382, 171-174.                                                                        | 27.8 | 1,059     |
| 154 | Muscle Creatine Kinase-deficient Mice. Journal of Biological Chemistry, 1995, 270, 19914-19920.                                                                                              | 3.4  | 70        |
| 155 | Muscle Creatine Kinase-deficient Mice. Journal of Biological Chemistry, 1995, 270, 19921-19929.                                                                                              | 3.4  | 169       |
| 156 | Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell, 1993, 74, 621-631.                                                                                   | 28.9 | 338       |
| 157 | Targeting of the creating kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors. Nucleic Acids Research, 1992, 20, 3815-3820.                                         | 14.5 | 91        |
| 158 | Genetic variability of the murine creatine kinase B gene locus and related pseudogenes in different inbred strains of mice. Genomics, 1992, 12, 340-349.                                     | 2.9  | 28        |
| 159 | Biosynthesis of the 25-kDa protein in the macrogametes/zygotes of Plasmodium falciparum.<br>Experimental Parasitology, 1990, 71, 229-235.                                                    | 1.2  | 22        |
| 160 | Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Molecular and Biochemical Parasitology, 1986, 20, 155-163.       | 1.1  | 114       |