
Antonio Lanzavecchia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3852119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 2022, 602, 664-670.	27.8	917
2	Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell, 2022, 185, 2279-2291.e17.	28.9	25
3	Clonal structure, stability and dynamics of human memory B cells and circulating plasmablasts. Nature Immunology, 2022, 23, 1076-1085.	14.5	39
4	ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 2022, 377, 735-742.	12.6	85
5	Broadly reactive human CD4 ⁺ T cells against Enterobacteriaceae are found in the naÃ ⁻ ve repertoire and are clonally expanded in the memory repertoire. European Journal of Immunology, 2021, 51, 648-661.	2.9	13
6	Structural basis of malaria RIFIN binding by LILRB1-containing antibodies. Nature, 2021, 592, 639-643.	27.8	8
7	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.	27.8	648
8	A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nature Microbiology, 2021, 6, 830-841.	13.3	21
9	Clonally expanded EOMES+ Tr1-like cells in primary and metastatic tumors are associated with disease progression. Nature Immunology, 2021, 22, 735-745.	14.5	36
10	Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. Science, 2021, 372, 1336-1341.	12.6	108
11	Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity. Nature Communications, 2021, 12, 3532.	12.8	23
12	Structural basis of LAIR1 targeting by polymorphic Plasmodium RIFINs. Nature Communications, 2021, 12, 4226.	12.8	1
13	Integrated longitudinal immunophenotypic, transcriptional, and repertoire analyses delineate immune responses in patients with COVID-19. Science Immunology, 2021, 6, .	11.9	108
14	Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature, 2021, 598, 342-347.	27.8	230
15	Interprotomer disulfide-stabilized variants of the human metapneumovirus fusion glycoprotein induce high titer-neutralizing responses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
16	Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 1109-1116.	12.6	262
17	Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	8
18	Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell, 2020, 183, 1024-1042.e21.	28.9	1,195

#	Article	IF	CITATIONS
19	AncesTree: An interactive immunoglobulin lineage tree visualizer. PLoS Computational Biology, 2020, 16, e1007731.	3.2	18
20	Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. Journal of Experimental Medicine, 2020, 217, .	8.5	28
21	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.	27.8	1,695
22	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
23	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
24	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
25	AncesTree: An interactive immunoglobulin lineage tree visualizer. , 2020, 16, e1007731.		0
26	Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Science Immunology, 2019, 4, .	11.9	98
27	Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell, 2019, 176, 1026-1039.e15.	28.9	558
28	Persistent Antibody Clonotypes Dominate the Serum Response to Influenza over Multiple Years and Repeated Vaccinations. Cell Host and Microbe, 2019, 25, 367-376.e5.	11.0	93
29	Dissecting human antibody responses: useful, basic and surprising findings. EMBO Molecular Medicine, 2018, 10, .	6.9	14
30	A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nature Medicine, 2018, 24, 401-407.	30.7	183
31	Role of B cells in TH cell responses in a mouse model of asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1395-1410.	2.9	39
32	Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12265-12270.	7.1	70
33	T cells in patients withÂnarcolepsy target self-antigens of hypocretin neurons. Nature, 2018, 562, 63-68.	27.8	244
34	An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell, 2018, 174, 1158-1171.e19.	28.9	171
35	Macrophage Death following Influenza Vaccination Initiates the Inflammatory Response that Promotes Dendritic Cell Function in the Draining Lymph Node. Cell Reports, 2017, 18, 2427-2440.	6.4	61
36	Social network architecture of human immune cells unveiled by quantitative proteomics. Nature Immunology, 2017, 18, 583-593.	14.5	296

#	Article	IF	CITATIONS
37	High-avidity IgA protects the intestine by enchaining growing bacteria. Nature, 2017, 544, 498-502.	27.8	307
38	Protection of calves by a prefusion-stabilized bovine RSV F vaccine. Npj Vaccines, 2017, 2, 7.	6.0	38
39	Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. Nature, 2017, 548, 597-601.	27.8	91
40	Immune stealth-driven O2 serotype prevalence and potential for therapeutic antibodies against multidrug resistant Klebsiella pneumoniae. Nature Communications, 2017, 8, 1991.	12.8	70
41	Development of broadâ€ s pectrum human monoclonal antibodies for rabies postâ€exposure prophylaxis. EMBO Molecular Medicine, 2016, 8, 407-421.	6.9	73
42	Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome. Journal of Infection and Public Health, 2016, 9, 231-235.	4.1	36
43	Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science, 2016, 353, 823-826.	12.6	675
44	Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes. Cell, 2016, 166, 596-608.	28.9	320
45	L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell, 2016, 167, 829-842.e13.	28.9	1,077
46	Antibody-guided vaccine design: identification of protective epitopes. Current Opinion in Immunology, 2016, 41, 62-67.	5.5	53
47	Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science, 2016, 351, 1339-1342.	12.6	370
48	Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science, 2016, 351, 1343-1346.	12.6	176
49	SARS-like WIV1-CoV poised for human emergence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3048-3053.	7.1	373
50	A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature, 2016, 529, 105-109.	27.8	140
51	Serum Immunoglobulin A Cross-Strain Blockade of Human Noroviruses. Open Forum Infectious Diseases, 2015, 2, ofv084.	0.9	31
52	Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nature Communications, 2015, 6, 7375.	12.8	74
53	ERK phosphorylation and miR-181a expression modulate activation of human memory TH17 cells. Nature Communications, 2015, 6, 6431.	12.8	35
54	Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10473-10478.	7.1	198

#	Article	IF	CITATIONS
55	A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine, 2015, 21, 1508-1513.	30.7	753
56	Functional heterogeneity of human memory CD4 ⁺ T cell clones primed by pathogens or vaccines. Science, 2015, 347, 400-406.	12.6	309
57	Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17965-17970.	7.1	116
58	Particle Conformation Regulates Antibody Access to a Conserved GII.4 Norovirus Blockade Epitope. Journal of Virology, 2014, 88, 8826-8842.	3.4	54
59	Within-Host Evolution Results in Antigenically Distinct GII.4 Noroviruses. Journal of Virology, 2014, 88, 7244-7255.	3.4	60
60	Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature, 2014, 516, 418-422.	27.8	300
61	Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature, 2013, 501, 439-443.	27.8	220
62	Pathogen-induced human TH17 cells produce IFN-Î ³ or IL-10 and are regulated by IL-1Î ² . Nature, 2012, 484, 514-518.	27.8	835
63	Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. Journal of Clinical Investigation, 2012, 122, 3781-3790.	8.2	142
64	A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins. Science, 2011, 333, 850-856.	12.6	1,092
65	Escape from Human Monoclonal Antibody Neutralization Affects In Vitro and In Vivo Fitness of Severe Acute Respiratory Syndrome Coronavirus. Journal of Infectious Diseases, 2010, 201, 946-955.	4.0	88
66	Structural Basis for Potent Cross-Neutralizing Human Monoclonal Antibody Protection against Lethal Human and Zoonotic Severe Acute Respiratory Syndrome Coronavirus Challenge. Journal of Virology, 2008, 82, 3220-3235.	3.4	144
67	Human monoclonal antibodies by immortalization of memory B cells. Current Opinion in Biotechnology, 2007, 18, 523-528.	6.6	89
68	Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nature Immunology, 2007, 8, 639-646.	14.5	1,670
69	An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Medicine, 2004, 10, 871-875.	30.7	679
70	Maintenance of Serological Memory by Polyclonal Activation of Human Memory B Cells. Science, 2002, 298, 2199-2202.	12.6	1,158
71	Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. European Journal of Immunology, 2000, 30, 2394-2403.	2.9	287
72	Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. European Journal of Immunology, 2000, 30, 705-708.	2.9	89

Antonio Lanzavecchia

#	Article	IF	CITATIONS
73	The Role of Chemokine Receptors in Primary, Effector, and Memory Immune Responses. Annual Review of Immunology, 2000, 18, 593-620.	21.8	969
74	Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. , 2000, 30, 705.		4
75	Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Medicine, 1999, 5, 919-923.	30.7	1,560
76	Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999, 402, 34-38.	27.8	19
77	Tâ€cell activation and the dynamic world of rafts:. Apmis, 1999, 107, 615-623.	2.0	36
78	Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999, 401, 708-712.	27.8	5,333
79	Distinct patterns and kinetics of chemokine production regulate dendritic cell function. European Journal of Immunology, 1999, 29, 1617-1625.	2.9	588
80	Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. European Journal of Immunology, 1999, 29, 4037-4042.	2.9	165
81	The interplay between the duration of TCR and cytokine signaling determines T cell polarization. European Journal of Immunology, 1999, 29, 4092-4101.	2.9	169
82	T Lymphocyte Costimulation Mediated by Reorganization of Membrane Microdomains. Science, 1999, 283, 680-682.	12.6	897
83	Distinct patterns and kinetics of chemokine production regulate dendritic cell function. , 1999, 29, 1617.		2
84	The interplay between the duration of TCR and cytokine signaling determines T cell polarization. European Journal of Immunology, 1999, 29, 4092-4101.	2.9	8
85	Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European Journal of Immunology, 1998, 28, 2760-2769.	2.9	1,020
86	Re-expression of RAG-1 and RAG-2 genes and evidence for secondary rearrangements in human germinal center B lymphocytes. European Journal of Immunology, 1998, 28, 3506-3513.	2.9	47
87	Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. , 1998, 28, 2760.		2
88	Selective Expression of the Eotaxin Receptor CCR3 by Human T Helper 2 Cells. Science, 1997, 277, 2005-2007.	12.6	1,011
89	Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature, 1997, 388, 782-787.	27.8	996
90	Agonist-induced T cell receptor down-regulation: molecular requirements and dissociation from T cell activation. European Journal of Immunology, 1997, 27, 1769-1773.	2.9	59

Antonio Lanzavecchia

#	Article	IF	CITATIONS
91	The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. European Journal of Immunology, 1997, 27, 2417-2425.	2.9	371
92	A T cell receptor (TCR) antagonist competitively inhibits serial TCR triggering by low-affinity ligands, but does not affect triggering by high-affinity anti-CD3 antibodies. European Journal of Immunology, 1997, 27, 3080-3083.	2.9	20
93	Signal extinction and T cell repolarization in T helper cell-antigen-presenting cell conjugates. European Journal of Immunology, 1996, 26, 2012-2016.	2.9	66
94	CD40 ligand-independent B cell activation revealed by CD40 ligand-deficient T cell clones: evidence for distinct activation requirements for antibody formation and B cell proliferation. European Journal of Immunology, 1995, 25, 1788-1793.	2.9	63
95	Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature, 1995, 375, 148-151.	27.8	1,045
96	Professional presentation of antigen by activated human T cells. European Journal of Immunology, 1994, 24, 71-75.	2.9	106
97	Clonal expansions of Vδ1+ and Vδ2+ cells increase with age and limit the repertoire of human γδT cells. European Journal of Immunology, 1994, 24, 1914-1918.	2.9	57
98	Peptide partners call the tune. Nature, 1994, 371, 198-199.	27.8	12
99	T cell epitope analysis with peptides simultaneously synthesized on cellulose membranes: Fine mapping of two DQ dependent epitopes. FEBS Letters, 1994, 352, 167-170.	2.8	28
100	The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. European Journal of Immunology, 1993, 23, 425-432.	2.9	105
101	Role of cAMP in regulating cytotoxic T lymphocyte adhesion and motility. European Journal of Immunology, 1993, 23, 790-795.	2.9	58
102	Presentation of Self-Peptides: Consequences for Self Nonself Discrimination and Allorecognition. International Reviews of Immunology, 1993, 10, 321-326.	3.3	0
103	Irreversible association of peptides with class II MHC molecules in living cells. Nature, 1992, 357, 249-252.	27.8	172
104	T cell clones with normal or defective O-galactosylation from a patient with permanent mixed-field polyagglutinability. European Journal of Immunology, 1992, 22, 1835-1842.	2.9	33
105	Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. European Journal of Immunology, 1992, 22, 2573-2578.	2.9	302
106	T cell activation by a bispecific anti-CD3/anti-major histocompatibility complex class I antibody. European Journal of Immunology, 1990, 20, 1393-1396.	2.9	12
107	How Many Ways Can a Killer Cell Kill?. International Reviews of Immunology, 1989, 4, 109-114.	3.3	0
108	Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. European Journal of Immunology, 1989, 19, 2237-2242.	2.9	703

#	Article	IF	CITATIONS
109	In vivo localization of a bispecific antibody which targets human t lymphocytes to lyse human colon cancer cells. International Journal of Cancer, 1989, 43, 501-507.	5.1	25
110	T cells can present antigens such as HIV gp120 targeted to their own surface molecules. Nature, 1988, 334, 530-532.	27.8	296
111	The use of hybrid hybridomas to target human cytotoxic T lymphocytes. European Journal of Immunology, 1987, 17, 105-111.	2.9	198
112	Lysis of nonnucleated red blood cells by cytotoxic T lymphocytes. European Journal of Immunology, 1987, 17, 1073-1074.	2.9	15
113	Antigen Uptake and Accumulation in Antigen-Specific B Cells. Immunological Reviews, 1987, 99, 39-51.	6.0	150
114	Is the T-cell receptor involved in T-cell killing?. Nature, 1986, 319, 778-780.	27.8	62
115	Antigen-specific interaction between T and B cells. Nature, 1985, 314, 537-539.	27.8	1,323
116	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 0, , .	27.8	101