Xuerong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3851739/publications.pdf

Version: 2024-02-01

		471509	454955
30	1,297	17	30
papers	citations	h-index	g-index
33	33	33	1969
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sulfonylurea receptor 1-expressing cancer cells induce cancer-associated fibroblasts to promote non-small cell lung cancer progression. Cancer Letters, 2022, 536, 215611.	7.2	11
2	Progress of Breast Cancer basic research in China. International Journal of Biological Sciences, 2021, 17, 2069-2079.	6.4	43
3	BET inhibitors combined with chemotherapy synergistically inhibit the growth of NSCLC cells. Oncology Reports, 2021, 45, .	2.6	10
4	Trichostatin A downregulates bromodomain and extra-terminal proteins to suppress osimertinib resistant non-small cell lung carcinoma. Cancer Cell International, 2021, 21, 216.	4.1	9
5	The value of circulating tumor cells with positive centromere probe 8 in the diagnosis of small pulmonary nodules. Translational Oncology, 2021, 14, 101052.	3.7	3
6	Tumorâ€derived exosomal miRâ€19bâ€3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clinical and Translational Medicine, 2021, 11, e478.	4.0	86
7	Role of endothelin receptor type <scp>B</scp> (<scp>EDNRB)</scp> in lung adenocarcinoma. Thoracic Cancer, 2020, 11, 1885-1890.	1.9	20
8	rowspan="2">p70S6K Promotes Acquired Resistance of Erlotinib Through Induction of Epithelial-Mesenchymal Transition in Non-Small Cell Lung Carcinoma. OncoTargets and Therapy, 2020, Volume 13, 5257-5270.	2.0	4
9	<p>AEG-1 promotes the growth of gastric cancer through the upregulation of elF4E expression</p> . OncoTargets and Therapy, 2019, Volume 12, 5887-5895.	2.0	3
10	Glibenclamide Targets Sulfonylurea Receptor 1 to Inhibit p70S6K Activity and Upregulate KLF4 Expression to Suppress Non-Small Cell Lung Carcinoma. Molecular Cancer Therapeutics, 2019, 18, 2085-2096.	4.1	19
11	Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression. Cancer Biology and Therapy, 2018, 19, 407-415.	3.4	36
12	Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin. Heliyon, 2017, 3, e00378.	3.2	11
13	<scp>AEG</scp> â€l induces gastric cancer metastasis by upregulation of <scp>elF</scp> 4E expression. Journal of Cellular and Molecular Medicine, 2017, 21, 3481-3493.	3.6	15
14	AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF- \hat{l}^21 -triggered epithelial-mesenchymal transition. Oncotarget, 2016, 7, 13122-13138.	1.8	40
15	p70S6K promotes IL-6-induced epithelial-mesenchymal transition and metastasis of head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 36539-36550.	1.8	39
16	Oncogenic miR-9 is a target of erlotinib in NSCLCs. Scientific Reports, 2015, 5, 17031.	3.3	54
17	Oroxylin A induces autophagy in human malignant glioma cells via the mTORâ€STAT3â€Notch signaling pathway. Molecular Carcinogenesis, 2015, 54, 1363-1375.	2.7	46
18	EGCG Enhances Cisplatin Sensitivity by Regulating Expression of the Copper and Cisplatin Influx Transporter CTR1 in Ovary Cancer. PLoS ONE, 2015, 10, e0125402.	2.5	72

#	Article	IF	CITATION
19	GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth. Oncotarget, 2015, 6, 8974-8987.	1.8	15
20	AEG-1 Is a Target of Perifosine and Is Over-Expressed in Gastric Dysplasia and Cancers. Digestive Diseases and Sciences, 2013, 58, 2873-2880.	2.3	24
21	MicroRNA-27a inhibitors alone or in combination with perifosine suppress the growth of gastric cancer cells. Molecular Medicine Reports, 2013, 7, 642-648.	2.4	10
22	Upregulation of the eIF4E signaling pathway contributes to the progression of gastric cancer, and targeting eIF4E by perifosine inhibits cell growth. Oncology Reports, 2013, 29, 2422-2430.	2.6	36
23	Perifosine enhances mTORC1-targeted cancer therapy by activation of GSK3 \hat{l}^2 in NSCLC cells. Cancer Biology and Therapy, 2012, 13, 1009-1017.	3.4	14
24	Downregulation of IRS-1 promotes metastasis of head and neck squamous cell carcinoma. Oncology Reports, 2012, 28, 659-667.	2.6	22
25	Enhancing mTOR-targeted cancer therapy. Expert Opinion on Therapeutic Targets, 2009, 13, 1193-1203.	3.4	56
26	Perifosine Inhibits Mammalian Target of Rapamycin Signaling through Facilitating Degradation of Major Components in the mTOR Axis and Induces Autophagy. Cancer Research, 2009, 69, 8967-8976.	0.9	137
27	Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors' anticancer efficacy. Cancer Biology and Therapy, 2008, 7, 1952-1958.	3.4	86
28	Enhancing Mammalian Target of Rapamycin (mTOR)–Targeted Cancer Therapy by Preventing mTOR/Raptor Inhibition-Initiated, mTOR/Rictor-Independent Akt Activation. Cancer Research, 2008, 68, 7409-7418.	0.9	152
29	Inhibition of Mammalian Target of Rapamycin Induces Phosphatidylinositol 3-Kinase-Dependent and Mnk-Mediated Eukaryotic Translation Initiation Factor 4E Phosphorylation. Molecular and Cellular Biology, 2007, 27, 7405-7413.	2.3	137
30	The alkylphospholipid perifosine induces apoptosis of human lung cancer cells requiring inhibition of Akt and activation of the extrinsic apoptotic pathway. Molecular Cancer Therapeutics, 2007, 6, 2029-2038.	4.1	87