George A Kraus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3850282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research at the Interface between Chemistry and Virology:Â Development of a Molecular Flashlight. Chemical Reviews, 1996, 96, 523-536.	47.7	148
2	PHOTOSENSITIZATION IS REQUIRED FOR INACTIVATION OF EQUINE INFECTIOUS ANEMIA VIRUS BY HYPERICIN. Photochemistry and Photobiology, 1991, 53, 169-174.	2.5	143
3	A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids. Green Chemistry, 2012, 14, 1593.	9.0	117
4	Synthetic Methods for the Preparation of 1,3â€Propanediol. Clean - Soil, Air, Water, 2008, 36, 648-651.	1.1	102
5	Synthesis of a precursor to quassimarin. Journal of Organic Chemistry, 1986, 51, 3347-3350.	3.2	82
6	Deprotonation of Benzylic Ethers Using a Hindered Phosphazene Base. A Synthesis of Benzofurans fromOrtho-Substituted Benzaldehydes. Organic Letters, 2000, 2, 2409-2410.	4.6	75
7	Synthetic Approach to Malibatol  A. Organic Letters, 2003, 5, 1191-1192.	4.6	75
8	<i>Hypericum</i> in infection: Identification of anti-viral and anti-inflammatory constituents. Pharmaceutical Biology, 2009, 47, 774-782.	2.9	71
9	Regiocontrol by remote substituents. An enantioselective total synthesis of frenolicin B via a highly regioselective Diels-Alder reaction. Journal of the American Chemical Society, 1993, 115, 5859-5860.	13.7	68
10	First Inverse Electron-Demand Diels–Alder Methodology of 3-Chloroindoles and Methyl Coumalate to Carbazoles. Organic Letters, 2014, 16, 1124-1127.	4.6	64
11	Antiretroviral activity of synthetic hypericin and related analogs. Biochemical and Biophysical Research Communications, 1990, 172, 149-153.	2.1	61
12	Hydrogen-Atom Abstraction/Cyclization in Synthesis. Direct Syntheses of Coumestan and Coumestrol. Journal of Organic Chemistry, 2000, 65, 5644-5646.	3.2	61
13	One-Pot Synthesis of 2-Substituted Indoles from 2-Aminobenzyl Phosphonium Salts. A Formal Total Synthesis of Arcyriacyanin A. Organic Letters, 2008, 10, 3061-3063.	4.6	60
14	The synthesis of amino acids by 1,3-dipolar cycloadditions of azomethine ylides. Tetrahedron, 1985, 41, 3537-3545.	1.9	59
15	Synthesis of the core bicyclic system of hyperforin and nemorosone. Tetrahedron Letters, 2003, 44, 659-661.	1.4	56
16	Mechanistic Insights into Ring-Opening and Decarboxylation of 2-Pyrones in Liquid Water and Tetrahydrofuran. Journal of the American Chemical Society, 2013, 135, 5699-5708.	13.7	56
17	An Improved Reductive Methylation Procedure for Quinones. Synthetic Communications, 1986, 16, 1037-1042.	2.1	53
18	Bridgehead radicals in organic, chemistry. An efficient construction of the ABDE ring system of the lycoctonine alkaloids. Tetrahedron Letters, 1993, 34, 1741-1744.	1.4	53

#	Article	IF	CITATIONS
19	Direct Total Syntheses of Frenolicin B and Kalafungin via Highly Regioselective Diels-Alder Reactions. Journal of Organic Chemistry, 1995, 60, 1154-1159.	3.2	51
20	A direct synthesis of 5,6-dihydroindolo[2,1-a]isoquinolines that exhibit immunosuppressive activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5539-5542.	2.2	48
21	Tandem Dielsâ [~] 'Alder/Ene Reactions. Organic Letters, 2004, 6, 3115-3117.	4.6	47
22	Electrochemical Conversion of Biologically Produced Muconic Acid: Key Considerations for Scale-Up and Corresponding Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 7098-7109.	6.7	45
23	The Synthesis of Isoindolo[2, 1-a]indoles via Both Radical and Organopalladium Strategies. Synthetic Communications, 1993, 23, 55-64.	2.1	44
24	A Direct Synthesis of O-Methyl Claussequinone. Journal of Organic Chemistry, 2003, 68, 4517-4518.	3.2	43
25	Aromatics from pyrones: para-substituted alkyl benzoates from alkenes, coumalic acid and methyl coumalate. Green Chemistry, 2011, 13, 2734.	9.0	43
26	A new synthetic strategy for the synthesis of bioactive stilbene dimers. A direct synthesis of amurensin H. Tetrahedron Letters, 2009, 50, 7180-7183.	1.4	40
27	Synthesis of Azafluorenone Antimicrobial Agents. Journal of Natural Products, 2010, 73, 1967-1968.	3.0	40
28	Live-cell imaging of Pol II promoter activity to monitor gene expression with RNA IMAGEtag reporters. Nucleic Acids Research, 2014, 42, e90-e90.	14.5	39
29	One-pot formal synthesis of biorenewable terephthalic acid from methyl coumalate and methyl pyruvate. Green Chemistry, 2014, 16, 2111-2116.	9.0	39
30	Divergent Diels–Alder methodology from methyl coumalate toward functionalized aromatics. Tetrahedron Letters, 2013, 54, 2366-2368.	1.4	37
31	Diels-Alder reactions using in situ generated quinones. Journal of Organic Chemistry, 1980, 45, 1174-1175.	3.2	36
32	Specificity and Ligand Affinities of the Cocaine Aptamer: Impact of Structural Features and Physiological NaCl. Analytical Chemistry, 2016, 88, 7715-7723.	6.5	36
33	Light-up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells. Methods, 2016, 98, 26-33.	3.8	36
34	Synthetic Routes to Pyrroloiminoquinone Alkaloids. A Direct Synthesis of Makaluvamine C. Journal of Organic Chemistry, 1998, 63, 9846-9849.	3.2	35
35	Synthesis of a model system for the preparation of phloroglucinol containing natural products. Tetrahedron, 2003, 59, 8975-8978.	1.9	35
36	A Direct Route to Biologically Active Kainic Acid Analogs. Journal of Organic Chemistry, 1997, 62, 2314-2315.	3.2	33

#	Article	IF	CITATIONS
37	A direct synthesis of neocryptolepine and isocryptolepine. Tetrahedron Letters, 2010, 51, 4137-4139.	1.4	33
38	Diacetylenic isobutylamides of Echinacea: synthesis and natural distribution. Phytochemistry, 2004, 65, 2477-2484.	2.9	32
39	Upgrading malic acid to bio-based benzoates via a Diels–Alder-initiated sequence with the methyl coumalate platform. RSC Advances, 2014, 4, 45657-45664.	3.6	31
40	Alkamide production from hairy root cultures of Echinacea. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 599-609.	2.1	30
41	Divergent Approach to Flavones and Aurones via Dihaloacrylic Acids. Unexpected Dependence on the Halogen Atom. Organic Letters, 2010, 12, 5278-5280.	4.6	29
42	A Flexible Synthesis of Indoles from ortho-Substituted Anilines: A Direct Synthesis of Isocryptolepine. Synthesis, 2010, 2010, 1386-1393.	2.3	28
43	Triacetic acid lactone as a common intermediate for the synthesis of 4-hydroxy-2-pyridones and 4-amino-2-pyrones. Tetrahedron Letters, 2016, 57, 1293-1295.	1.4	28
44	Fluorinated Analogs of Malachite Green: Synthesis and Toxicity. Molecules, 2008, 13, 986-994.	3.8	27
45	A Flexible Synthesis of 2,3-Disubstituted Indoles from Aminobenzyl Phosphonium Salts. A Direct Synthesis of Rutaecarpine. Journal of Organic Chemistry, 2009, 74, 5337-5341.	3.2	27
46	Total Synthesis of Paracaseolide A. Organic Letters, 2013, 15, 613-615.	4.6	27
47	Aromatics from pyrones: esters of terephthalic acid and isophthalic acid from methyl coumalate. RSC Advances, 2013, 3, 12721.	3.6	26
48	The First Synthesis of a Diynone fromEchinacea pallida. Synthesis, 2005, 2005, 3502-3504.	2.3	25
49	Direct Synthesis of G-2N. Journal of Organic Chemistry, 1996, 61, 2770-2773.	3.2	24
50	A Convenient Synthesis of Type A Procyanidins. Molecules, 2009, 14, 807-815.	3.8	24
51	Regioselective Diels-Alder reactions. A synthesis of the left-hand portion of CC-1065. Journal of Organic Chemistry, 1985, 50, 283-284.	3.2	23
52	Synthesis of phenanthrenes from formylbenzoquinone. Tetrahedron Letters, 2002, 43, 5319-5321.	1.4	23
53	Preparation of advanced intermediates for the synthesis of both methyllycaconitine and racemulsonine via a common intermediate. Tetrahedron Letters, 2005, 46, 1111-1113.	1.4	23
54	Synthesis of N-(2-methylpropyl)-2E-undecene-8,10-diynamide, a novel constituent of Echinacea angustifolia. Tetrahedron Letters, 2003, 44, 5505-5506.	1.4	22

#	Article	IF	CITATIONS
55	Progress towards the synthesis of papuaforin A: selective formation of α-bromoenones from silyl enol ethers. Tetrahedron Letters, 2008, 49, 286-288.	1.4	21
56	Michael Additions of Functionalized Phthalides. Synthetic Communications, 1977, 7, 505-508.	2.1	20
57	Diels-Alder reactions of quinone sulfoxides. Journal of Organic Chemistry, 1986, 51, 114-116.	3.2	20
58	A direct route to acylhydroquinones from α-keto acids and α-carboxamido acids. Tetrahedron Letters, 1998, 39, 3957-3960.	1.4	20
59	A Direct Synthesis of Hyperolactone C. Journal of Natural Products, 2004, 67, 1039-1040.	3.0	20
60	Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum. Virology Journal, 2009, 6, 101.	3.4	20
61	Computational Framework for the Identification of Bioprivileged Molecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 2414-2428.	6.7	20
62	A direct connection of a tricyclic analog of methyllycaconitine with 2-methylsuccinimidobenzoic acid. Tetrahedron Letters, 1998, 39, 2451-2454.	1.4	19
63	Metabolic Profiling ofEchinaceaGenotypes and a Test of Alternative Taxonomic Treatments. Planta Medica, 2009, 75, 178-183.	1.3	19
64	Analogs of Glutamic Acid: Synthesis and Biological Evaluation. Synthetic Communications, 1990, 20, 2667-2673.	2.1	18
65	Synthesis of the First Phthalocyanine-Containing Dendrimer. Journal of Organic Chemistry, 1998, 63, 7520-7521.	3.2	18
66	Synthesis of 1,4-Phenanthrenequinones via Stannic Chloride-Induced Cyclizations. Journal of Organic Chemistry, 1999, 64, 1720-1722.	3.2	18
67	Tumor Cell Toxicity of Hypericin and Related Analogs¶. Photochemistry and Photobiology, 2001, 74, 216.	2.5	18
68	A Direct Synthesis of Renewable Sulfonateâ€Based Surfactants. Journal of Surfactants and Detergents, 2013, 16, 317-320.	2.1	18
69	Synthesis of chroman aldehydes that inhibit HIV. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1399-1401.	2.2	17
70	An improved aldol protocol for the preparation of 6-styrenylpyrones. Tetrahedron Letters, 2015, 56, 7112-7114.	1.4	17
71	A Racemic Synthesis of the Novel Antibacterial Agent Juglomycin A. Synthetic Communications, 1996, 26, 4501-4506.	2.1	16
72	A synthesis of racemic deliquinone. Tetrahedron Letters, 2001, 42, 6649-6650.	1.4	16

#	Article	IF	CITATIONS
73	Synthesis and Natural Distribution of Anti-inflammatory Alkamides from Echinacea. Molecules, 2006, 11, 758-767.	3.8	16
74	Intramolecular radical cyclizations onto quinones. A direct synthesis of Bauhinoxepin J. Tetrahedron Letters, 2009, 50, 5303-5304.	1.4	16
75	A Direct Synthesis of Î ³ -Ethoxy Dienones. Synthetic Communications, 1982, 12, 521-525.	2.1	15
76	Synthesis and Evaluation of Compounds That Affect Soybean Cyst Nematode Egg Hatch. Journal of Agricultural and Food Chemistry, 1994, 42, 1839-1840.	5.2	15
77	Synthesis of Puraquinonic Acid Ethyl Ester and Deliquinone via a Common Intermediate. Journal of Organic Chemistry, 2002, 67, 5857-5859.	3.2	15
78	A synthesis of a thysanone analog. Tetrahedron, 2002, 58, 7391-7395.	1.9	15
79	A direct synthesis of denbinobin. Tetrahedron Letters, 2002, 43, 9597-9599.	1.4	15
80	Use of Allylic Strain To Enforce Stereochemistry. Direct Syntheses of 7,8-Dihydroxycalamenene and Mansonone C. Organic Letters, 2006, 8, 5315-5316.	4.6	15
81	An efficient synthesis of 4-aryl kainic acid analogs. Tetrahedron, 1999, 55, 943-954.	1.9	14
82	A three-component reaction between benzynes, the enolate of acetaldehyde, and unsaturated esters and dihydroisoquinolines. Tetrahedron, 2010, 66, 569-572.	1.9	14
83	Selective pyrone functionalization: reductive alkylation of triacetic acid lactone. Tetrahedron Letters, 2015, 56, 3494-3496.	1.4	14
84	The Reaction of Organocuprates with Bridgehead Enones. Synthetic Communications, 1988, 18, 473-480.	2.1	13
85	Diels-Alder Reactions of Azlactones. Synthetic Communications, 1989, 19, 2401-2407.	2.1	13
86	Synthesis and Evaluation of a Pleurotin Analog. Synthetic Communications, 1993, 23, 2041-2049.	2.1	13
87	An Improved Synthesis of 3-Substituted Furans from Substituted Butene-1,4-diols. Synthetic Communications, 1998, 28, 1093-1096.	2.1	13
88	Regiochemical Control by Remote Substituents. A Direct Synthesis of Tetrangulol. Synlett, 2001, 2001, 0521-0522.	1.8	13
89	Reactions of Carbanions with 1,3-Benzodioxin-4-ones: Facile Routes to Flavones, Aurones, and Acyl Phloroglucinols. Synthesis, 2008, 2008, 2427-2431.	2.3	13
90	Quinones as Key Intermediates in Natural Products Synthesis. Syntheses of Bioactive Xanthones from Hypericum perforatum. Molecules, 2009, 14, 2857-2861.	3.8	13

#	Article	IF	CITATIONS
91	Conversion of substituted benzyl ethers to diarylmethanes. A direct synthesis of diarylbenzofurans. Tetrahedron Letters, 2012, 53, 7072-7074.	1.4	13
92	Annulations of 5-Phenylthiobutenolides and First Synthesis of (±)-Indanostatin. Synlett, 2019, 30, 353-355.	1.8	13
93	Synthesis of (±)-Naphthacemycin A ₉ . Journal of Organic Chemistry, 2018, 83, 15549-15552.	3.2	12
94	A direct route to isoflavan quinones. The synthesis of colutequinones A and B. Tetrahedron, 2003, 59, 7935-7937.	1.9	11
95	Preparation of complex bridged bicyclic ring systems from 3,3-diacetoxy-2-phenylsulfonylpropene and β-keto esters. Tetrahedron, 2005, 61, 2111-2116.	1.9	11
96	Synthesis of isophthalates from methyl coumalate. RSC Advances, 2017, 7, 56760-56763.	3.6	11
97	New effective inhibitors of the Abelson kinase. Bioorganic and Medicinal Chemistry, 2010, 18, 6316-6321.	3.0	10
98	Synthesis of polyhydroxylated xanthones via acyl radical cyclizations. Tetrahedron Letters, 2012, 53, 111-114.	1.4	10
99	Direct Synthesis of 5-Substituted Naphthoquinones. Journal of Organic Chemistry, 2002, 67, 2358-2360.	3.2	9
100	Direct approaches to annulated indoles. A formal total synthesis of 0231B. Tetrahedron, 2005, 61, 9502-9505.	1.9	9
101	The Synthesis and Natural Distribution of the Major Ketone Constituents in Echinacea pallida. Molecules, 2007, 12, 406-414.	3.8	9
102	Divergent pathways to isophthalates and naphthalate esters from methyl coumalate. Tetrahedron Letters, 2018, 59, 4008-4010.	1.4	9
103	A Bridgehead Enone Approach to Huperzine a. Synthetic Communications, 1992, 22, 2625-2634.	2.1	8
104	A novel Fremy's salt-mediated oxidation and rearrangement of anilines into amino ortho-diketones. Applications to the synthesis of pyrrolobenzodiazepines. Tetrahedron Letters, 1999, 40, 2039-2040.	1.4	8
105	Synthesis and endothelin receptor binding activity of synthetic analogues of RES-1149-2. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 895-897.	2.2	8
106	Generation of Fluorescent Adducts of Malondialdehyde and Amino Acids: Toward an Understanding of Lipofuscin [¶] . Photochemistry and Photobiology, 2004, 79, 21-25.	2.5	8
107	Efficient synthesis of fluorescent rosamines: multifunctional platforms for cellular imaging. Tetrahedron Letters, 2014, 55, 1549-1551.	1.4	8
108	Identification and characterization of small molecule inhibitors of porcine reproductive and respiratory syndrome virus. Antiviral Research, 2017, 146, 28-35.	4.1	8

#	Article	IF	CITATIONS
109	Next-Generation High-Performance Bio-Based Naphthalate Polymers Derived from Malic Acid for Sustainable Food Packaging. ACS Sustainable Chemistry and Engineering, 2022, 10, 2624-2633.	6.7	8
110	A General Synthesis of Functionalized Hydroxy Quinones. Synthetic Communications, 1980, 10, 9-16.	2.1	7
111	Phytochemical medicinal agents. A quinone-based route to pterocarpins. Tetrahedron Letters, 2005, 46, 7511-7513.	1.4	7
112	Phytochemicals from Echinacea and Hypericum: A Direct Synthesis of Isoligularone. Synthetic Communications, 2007, 37, 1251-1257.	2.1	7
113	Characterization of the Photophysical Behavior of DFHBI Derivatives: Fluorogenic Molecules that Illuminate the Spinach RNA Aptamer. Journal of Physical Chemistry B, 2019, 123, 2536-2545.	2.6	7
114	A Synthesis of Dihydro Eurotiumide B via a Tandem Butenolide Annulation/Reductive Thiolation Reaction. Journal of Organic Chemistry, 2019, 84, 16329-16332.	3.2	7
115	The Reaction of Ketone Enolates with a δ-Oxo Phosphonate: A Carbanion-Based [4 + 2] Annulation. Synlett, 2001, 2001, 0793-0794.	1.8	6
116	Phosphonate Aldehyde Annulation. A One-Pot Synthesis of δ-Hydroxy Cyclopentenoic Esters. Organic Letters, 2002, 4, 2033-2034.	4.6	6
117	Tandem Diels–Alder reaction/radical cyclizations for the rapid construction of bridged ring systems. Tetrahedron Letters, 2004, 45, 1457-1459.	1.4	6
118	A concise synthesis of 5-demethyl-HKI 0231A and 5-demethyl-HKI 0231B. Tetrahedron Letters, 2006, 47, 7801-7803.	1.4	6
119	Synthesis and antibacterial activity of littorachalcone and related diphenyl ethers. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2329-2332.	2.2	6
120	New Approach to Flavonols via Base-Mediated Cyclization: Total Synthesis of 3,5,6,7-Tetramethoxyflavone. Synlett, 2012, 23, 385-388.	1.8	6
121	A one-pot conversion of ortho-alkynyl benzaldehydes into indolo[2,1-a]isoquinolines. Tetrahedron Letters, 2013, 54, 5597-5599.	1.4	6
122	Ozonolysis of Alkynes—A Flexible Route to Alpha-Diketones: Synthesis of Al-2. Organic Letters, 2020, 22, 7424-7426.	4.6	6
123	Characterization of a Cytosolic Acyl-Activating Enzyme Catalyzing the Formation of 4-Methylvaleryl-CoA for Pogostone Biosynthesis in <i>Pogostemon Cablin</i> . Plant and Cell Physiology, 2021, 62, 1556-1571.	3.1	6
124	Direct Synthesis of Chrysosplenol D. Journal of Natural Products, 2008, 71, 1961-1962.	3.0	5
125	Rapid assembly of the procyanidin A skeleton. Tetrahedron Letters, 2017, 58, 4609-4611.	1.4	5
126	Annulations with Butenolides and Phthalides: New Entries to Isocoumarins, 3,4-Dihydroisocoumarins, and Benzofurans. Synthesis, 2020, 52, 2821-2827.	2.3	5

#	Article	IF	CITATIONS
127	A Reinvestigation of the Photochemistry of 2-Alkoxy-1,4-naphthoquinones. Synthetic Communications, 1990, 20, 1837-1841.	2.1	4
128	A Synthetic Equivalent of 3,5-Dimethoxyphenyl Lithium. A Facile Route to 5-Substituted Resorcinols. Synthetic Communications, 2000, 30, 2133-2141.	2.1	4
129	Nitromethyl benzoate annulation reactions: a rapid construction of the stealthin skeleton. Tetrahedron Letters, 2012, 53, 4444-4446.	1.4	4
130	Heterocycles from wine: synthesis and biological evaluation ofÂsalidrosides. Tetrahedron, 2015, 71, 3115-3119.	1.9	4
131	Acyl furans from cyclohexane-1,3-diones – A synthesis of hibiscone C. Tetrahedron Letters, 2019, 60, 1186-1188.	1.4	4
132	Synthesis of a Novel Carbocyclic Nucleoside. Nucleosides & Nucleotides, 1997, 16, 1961-1965.	0.5	3
133	Regiochemical Control by Remote Substituents - A Selective Synthesis of Angularly Fused Ring Systems. European Journal of Organic Chemistry, 2005, 2005, 3040-3044.	2.4	3
134	Synthesis of the tetracyclic ring system of cumbiasin via tandem radical cyclizations. Tetrahedron Letters, 2006, 47, 7797-7799.	1.4	3
135	The preparation of ketone constituents from Echinacea pallida. Tetrahedron, 2011, 67, 8235-8237.	1.9	3
136	A direct synthesis of atractylodinol, a potent inhibitor of PRRSV, and its biological evaluation. Tetrahedron Letters, 2016, 57, 5185-5187.	1.4	3
137	A flexible route to bioactive 6-alkyl-î±-pyrones. Tetrahedron Letters, 2017, 58, 892-893.	1.4	3
138	An entry to indole quinones using in situ generated nitrobenzoquinone. Tetrahedron Letters, 2018, 59, 1424-1426.	1.4	3
139	The first synthesis of biatriosporin D. Tetrahedron Letters, 2018, 59, 1968-1969.	1.4	3
140	Base-Promoted Reactions of Hydroxyquinones with Pyrones: A Direct and Sustainable Entry to Anthraquinones and Naphthoquinones. Synlett, 2019, 30, 1840-1842.	1.8	3
141	Synthesis, Fabrication, and Characterization of Functionalized Polydiacetylene Containing Cellulose Nanofibrous Composites for Colorimetric Sensing of Organophosphate Compounds. Nanomaterials, 2021, 11, 1869.	4.1	3
142	A Photochemical Alternative to the Friedelâ \in "Crafts Reaction. ACS Symposium Series, 1994, , 76-83.	0.5	2
143	Dielsâ~'Alder Reactions of Quinol Lactones:Â A Change of Regioselectivity with Stannic Chloride Catalysis. Journal of Organic Chemistry, 2002, 67, 9475-9476.	3.2	2
144	Blending the Effectiveness of Anionic Polymerization with the Versatility of RAFT by Use of the Atom Transfer Radical Addition–Fragmentation Technique. Macromolecular Chemistry and Physics, 2019, 220, 1900065.	2.2	2

#	ARTICLE	IF	CITATIONS
145	Direct Synthesis of the Phenanthroviridone Skeleton Using a Highly Regioselective Nitroquinone Diels–Alder Reaction. ACS Omega, 2020, 5, 9311-9315.	3.5	2
146	A Convenient Procedure for Sonogashira Reactions Using Propyne. Synthesis, 0, 0, .	2.3	2
147	Synthesis of uliginosins A and B. Natural Product Communications, 2012, 7, 191-2.	0.5	2
148	The reaction of 4-methoxybenzylmagnesium chloride with aldehydes. The formation of 4-exomethylenecyclohexenones. Tetrahedron Letters, 2004, 45, 6839-6840.	1.4	1
149	Acylation and palladium-mediated couplings of maltol, a biobased γ-pyrone. Tetrahedron Letters, 2020, 61, 151591.	1.4	1
150	Synthesis of cyercenes and yangonin by a pyrone aldol protocol. Results in Chemistry, 2021, 3, 100219.	2.0	1
151	Synthesis of 3-farnesyl salicylic acid, a novel antimicrobial from Piper multiplinervium. Natural Product Communications, 2013, 8, 911-3.	0.5	1
152	Management of the Soybean Cyst Nematode by Using a Biorational Strategy. ACS Symposium Series, 2004, , 161-172.	0.5	0
153	Preparation of Complex Bridged Bicyclic Ring Systems from 3,3-Diacetoxy-2-phenylsulfonylpropene and β-Keto Esters ChemInform, 2005, 36, no.	0.0	0
154	Regiochemical Control by Remote Substituents — A Selective Synthesis of Angularly Fused Ring Systems ChemInform, 2005, 36, no.	0.0	0
155	Direct Approaches to Annulated Indoles. A Formal Total Synthesis of 0231B ChemInform, 2006, 37, no.	0.0	0
156	Efficient, Scalable Syntheses of Ginkgolic Acids. Natural Product Communications, 2019, 14, 1934578X1985134.	0.5	0
157	Anionic Fries rearrangement of aryl carbonates. A facile route to ortho-hydroxy esters. Tetrahedron Letters, 2020, 61, 152488.	1.4	0
158	The Dianion of Dehydroacetic Acid: A Direct Synthesis of Pogopyrone A. Synthesis, 2020, 52, 1541-1543.	2.3	0
159	IMAGEtags for imaging gene expression in living cells in realâ€ŧime. FASEB Journal, 2009, 23, 517.2.	0.5	0
160	IMACEtag (Intracellular MultiAptamer Genetic tag) for Realâ€ŧime Imaging of Gene Promoter Activity. FASEB Journal, 2010, 24, 903.2.	0.5	0
161	Realâ€ŧime Imaging of Transcriptional Elongation. FASEB Journal, 2011, 25, .	0.5	0