
Thomas T Veblen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3850188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Species Climatic Suitability Explains Insect–Host Dynamics in the Southern Rocky Mountains, USA. Ecosystems, 2022, 25, 91-104.	3.4	1
2	North American tree migration paced by climate in the West, lagging in the East. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
3	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
4	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
5	A traitâ€based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. Journal of Ecology, 2021, 109, 313-326.	4.0	18
6	Disturbance detection in landsat time series is influenced by tree mortality agent and severity, not by prior disturbance. Remote Sensing of Environment, 2021, 254, 112244.	11.0	35
7	Droughty times in mesic places: factors associated with forest mortality vary by scale in a temperate subalpine region. Ecosphere, 2021, 12, e03318.	2.2	14
8	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	12.8	46
9	Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U.S.A Remote Sensing, 2021, 13, 1089.	4.0	17
10	Increasing rates of subalpine tree mortality linked to warmer and drier summers. Journal of Ecology, 2021, 109, 2203-2218.	4.0	24
11	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
12	Future dominance by quaking aspen expected following shortâ€interval, compounded disturbance interaction. Ecosphere, 2021, 12, e03345.	2.2	12
13	The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200378.	4.0	14
14	Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Ecological Applications, 2020, 30, e02001.	3.8	54
15	Reproductive maturity and cone abundance vary with tree size and stand basal area for two widely distributed conifers. Ecosphere, 2020, 11, e03092.	2.2	17
16	Forest and woodland replacement patterns following drought-related mortality. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29720-29729.	7.1	99
17	A changing climate is snuffing out postâ€fire recovery in montane forests. Global Ecology and Biogeography, 2020, 29, 2039-2051.	5.8	52
18	Population collapse and retreat to fire refugia of the Tasmanian endemic conifer <i>Athrotaxis selaginoides</i> following the transition from Aboriginal to European fire management. Global Change Biology, 2020, 26, 3108-3121.	9.5	10

#	Article	IF	CITATIONS
19	Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing. Ecology, 2020, 101, e02998.	3.2	15
20	Guidelines for including bamboos in tropical ecosystem monitoring. Biotropica, 2020, 52, 427-443.	1.6	11
21	Field-Validated Burn-Severity Mapping in North Patagonian Forests. Remote Sensing, 2020, 12, 214.	4.0	26
22	Still standing: Recent patterns of post-fire conifer refugia in ponderosa pine-dominated forests of the Colorado Front Range. PLoS ONE, 2020, 15, e0226926.	2.5	12
23	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	4.0	281
24	Fire-catalyzed vegetation shifts in ponderosa pine and Douglas-fir forests of the western United States. Environmental Research Letters, 2020, 15, 1040b8.	5.2	29
25	Climate, Environment, and Disturbance History Govern Resilience of Western North American Forests. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	174
26	Stand dynamics and topographic setting influence changes in live tree biomass over a 34-year permanent plot record in a subalpine forest in the Colorado Front Range. Canadian Journal of Forest Research, 2019, 49, 1256-1264.	1.7	9
27	Wildfire activity and land use drove 20thâ€century changes in forest cover in the Colorado front range. Ecosphere, 2019, 10, e02594.	2.2	27
28	Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6193-6198.	7.1	307
29	Spruce Beetle outbreaks guide American Threeâ€ŧoed Woodpecker Picoides dorsalis occupancy patterns in subalpine forests. Ibis, 2019, 161, 172-183.	1.9	6
30	Moisture availability limits subalpine tree establishment. Ecology, 2018, 99, 567-575.	3.2	100
31	Radial growth response to climate change along the latitudinal range of the world's southernmost conifer in southern South America. Journal of Biogeography, 2018, 45, 1140-1152.	3.0	16
32	Preâ€outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado. Ecological Applications, 2018, 28, 457-472.	3.8	8
33	Influences of fire–vegetation feedbacks and postâ€fire recovery rates on forest landscape vulnerability to altered fire regimes. Journal of Ecology, 2018, 106, 1925-1940.	4.0	114
34	Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts. Global Change Biology, 2018, 24, 197-211.	9.5	20
35	Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 2018, 21, 243-252.	6.4	448
36	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	12.8	167

#	Article	IF	CITATIONS
37	Different vital rates of Engelmann spruce and subalpine fir explain discordance in understory and overstory dominance. Canadian Journal of Forest Research, 2018, 48, 1554-1562.	1.7	10
38	Climate Change Amplifications of Climateâ€Fire Teleconnections in the Southern Hemisphere. Geophysical Research Letters, 2018, 45, 5071-5081.	4.0	53
39	Landscape drivers of recent fire activity (2001-2017) in south-central Chile. PLoS ONE, 2018, 13, e0201195.	2.5	47
40	Declines in lowâ€elevation subalpine tree populations outpace growth in highâ€elevation populations with warming. Journal of Ecology, 2017, 105, 1347-1357.	4.0	50
41	Effects of biological legacies and herbivory on fuels and flammability traits: A longâ€ŧerm experimental study of alternative stable states. Journal of Ecology, 2017, 105, 1309-1322.	4.0	44
42	Mixedâ€severity fire history at a forest–grassland ecotone in west central British Columbia, Canada. Ecological Applications, 2017, 27, 1746-1760.	3.8	24
43	Does tree growth sensitivity to warming trends vary according to treeline form?. Journal of Biogeography, 2017, 44, 1469-1480.	3.0	18
44	ls initial postâ€disturbance regeneration indicative of longerâ€ŧerm trajectories?. Ecosphere, 2017, 8, e01924.	2.2	36
45	Fire history in southern Patagonia: human and climate influences on fire activity in <i>Nothofagus pumilio</i> forests. Ecosphere, 2017, 8, e01932.	2.2	28
46	Southern Annular Mode drives multicentury wildfire activity in southern South America. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9552-9557.	7.1	59
47	Summer and winter drought drive the initiation and spread of spruce beetle outbreak. Ecology, 2017, 98, 2698-2707.	3.2	47
48	Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA. Forests, 2017, 8, 159.	2.1	29
49	Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA. PLoS ONE, 2016, 11, e0158138.	2.5	12
50	Positive Feedbacks to Fire-Driven Deforestation Following Human Colonization of the South Island of New Zealand. Ecosystems, 2016, 19, 1325-1344.	3.4	30
51	Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range. Ecosphere, 2016, 7, e01594.	2.2	87
52	The relative importance of tree and stand properties in susceptibility to spruce beetle outbreak in the midâ€20th century. Ecosphere, 2016, 7, e01485.	2.2	20
53	Wilderness in the 21st Century: A Framework for Testing Assumptions about Ecological Intervention in Wilderness Using a Case Study of Fire Ecology in the Rocky Mountains. Journal of Forestry, 2016, 114, 384-395.	1.0	13
54	Fire severity unaffected by spruce beetle outbreak in spruceâ€fir forests in southwestern Colorado. Ecological Applications, 2016, 26, 700-711.	3.8	35

#	Article	IF	CITATIONS
55	Climate and Wildfire in Western US Forests. , 2016, , 43-55.		5
56	Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere, 2015, 6, 1-20.	2.2	48
57	Negative Feedbacks on Bark Beetle Outbreaks: Widespread and Severe Spruce Beetle Infestation Restricts Subsequent Infestation. PLoS ONE, 2015, 10, e0127975.	2.5	48
58	Spatiotemporal fire dynamics in mixedâ€conifer and aspen forests in the San Juan Mountains of southwestern Colorado, USA. Ecological Monographs, 2015, 85, 583-603.	5.4	39
59	Relationships between climate variability and radial growth of Nothofagus pumilio near altitudinal treeline in the Andes of northern Patagonia, Chile. Forest Ecology and Management, 2015, 342, 112-121.	3.2	37
60	Detection of mountain pine beetle-killed ponderosa pine in a heterogeneous landscape using high-resolution aerial imagery. International Journal of Remote Sensing, 2015, 36, 5353-5372.	2.9	8
61	Permanent forest plots show accelerating tree mortality in subalpine forests of the Colorado Front Range from 1982 to 2013. Forest Ecology and Management, 2015, 341, 8-17.	3.2	51
62	Setting the Stage for Mixed- and High-Severity Fire. , 2015, , 3-22.		5
63	Bark Beetles and High-Severity Fires in Rocky Mountain Subalpine Forests. , 2015, , 149-174.		3
64	Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4375-4380.	7.1	103
65	Past and Present Vulnerability of Closed-Canopy Temperate Forests to Altered Fire Regimes: A Comparison of the Pacific Northwest, New Zealand, and Patagonia. BioScience, 2015, 65, 151-163.	4.9	35
66	A field experiment informs expected patterns of conifer regeneration after disturbance under changing climate conditions. Canadian Journal of Forest Research, 2015, 45, 1607-1616.	1.7	63
67	Detection of spruce beetle-induced tree mortality using high- and medium-resolution remotely sensed imagery. Remote Sensing of Environment, 2015, 168, 134-145.	11.0	62
68	Effects of highâ€severity fire drove the population collapse of the subalpine Tasmanian endemic conifer <i>Athrotaxis cupressoides</i> . Global Change Biology, 2015, 21, 445-458.	9.5	65
69	Positive fire feedbacks contribute to shifts from <i><scp>N</scp>othofagus pumilio</i> forests to fireâ€prone shrublands in <scp>P</scp> atagonia. Journal of Vegetation Science, 2015, 26, 89-101.	2.2	89
70	Recent fire and cattle herbivory enhance plantâ€level fuel flammability in shrublands. Journal of Vegetation Science, 2015, 26, 123-133.	2.2	22
71	Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE, 2014, 9, e87852.	2.5	130
72	Drought induces spruce beetle (<i>Dendroctonus rufipennis</i>) outbreaks across northwestern Colorado. Ecology, 2014, 95, 930-939.	3.2	129

#	Article	IF	CITATIONS
73	Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range. PLoS ONE, 2014, 9, e106971.	2.5	63
74	Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains?. Forest Ecology and Management, 2014, 334, 53-63.	3.2	26
75	Do tree and stand-level attributes determine susceptibility of spruce-fir forests to spruce beetle outbreaks in the early 21st century?. Forest Ecology and Management, 2014, 318, 44-53.	3.2	38
76	Compounded disturbances in subâ€alpine forests in western <scp>C</scp> olorado favour future dominance by quaking aspen (<i><scp>P</scp>opulus tremuloides</i>). Journal of Vegetation Science, 2013, 24, 168-176.	2.2	83
77	Habitat distribution modeling reveals vegetation flammability and land use as drivers of wildfire in SW Patagonia. Ecosphere, 2013, 4, 1-20.	2.2	33
78	Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1756-1760.	7.1	81
79	Wildfire activity in rainforests in western Patagonia linked to the Southern Annular Mode. International Journal of Wildland Fire, 2012, 21, 114.	2.4	44
80	Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology, 2012, 93, 2175-2185.	3.2	137
81	Standâ€replacing fires reduce susceptibility of lodgepole pine to mountain pine beetle outbreaks in Colorado. Journal of Biogeography, 2012, 39, 2052-2060.	3.0	40
82	Dendroecological reconstruction of 1980s mountain pine beetle outbreak in lodgepole pine forests in northwestern Colorado. Ecoscience, 2012, 19, 113-126.	1.4	10
83	Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA. PLoS ONE, 2012, 7, e30002.	2.5	95
84	Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere, 2012, 3, 1-25.	2.2	47
85	Respuesta inicial de la regeneración arbórea luego de la floración y muerte de Chusquea culeou (Poaceae) en bosques andinos del centro-sur de Chile. Bosque, 2012, 33, 9-10.	0.3	9
86	Is foliar flammability of woody species related to time since fire and herbivory in northwest Patagonia, <scp>A</scp> rgentina?. Journal of Vegetation Science, 2012, 23, 931-941.	2.2	35
87	Proximity to grasslands influences fire frequency and sensitivity to climate variability in ponderosa pine forests of the Colorado Front Range. International Journal of Wildland Fire, 2012, 21, 562.	2.4	25
88	Mortality of the outbreak defoliator Ormiscodes amphimone (Lepidoptera: Saturniidae) caused by natural enemies in northwestern Patagonia, Argentina. Revista Chilena De Historia Natural, 2012, 85, 113-122.	1.2	10
89	Variability in the Southern Annular Mode determines wildfire activity in Patagonia. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	54
90	The amplifying effects of humans on fire regimes in temperate rainforests in western Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311, 82-92.	2.3	41

#	Article	IF	CITATIONS
91	Adapting to global environmental change in Patagonia: What role for disturbance ecology?. Austral Ecology, 2011, 36, 891-903.	1.5	88
92	Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Global Change Biology, 2011, 17, 239-253.	9.5	74
93	Synergistic influences of introduced herbivores and fire on vegetation change in northern Patagonia, Argentina. Journal of Vegetation Science, 2011, 22, 59-71.	2.2	64
94	Spatial prediction of caterpillar (Ormiscodes) defoliation in Patagonian Nothofagus forests. Landscape Ecology, 2011, 26, 791-803.	4.2	17
95	Changes in litter and dead wood loads following tree death beneath subalpine conifer species in northern Colorado. Canadian Journal of Forest Research, 2011, 41, 331-340.	1.7	17
96	Understory vegetation indicates historic fire regimes in ponderosa pine-dominated ecosystems in the Colorado Front Range. Journal of Vegetation Science, 2010, 21, 488-499.	2.2	19
97	Influence of fire severity on stand development of <i>Araucaria araucana</i> – <i>Nothofagus pumilio</i> stands in the Andean cordillera of southâ€central Chile. Austral Ecology, 2010, 35, 597-615.	1.5	42
98	Widespread Increase of Tree Mortality Rates in the Western United States. Science, 2009, 323, 521-524.	12.6	1,465
99	<i>Pilgerodendron uviferum</i> : The southernmost tree-ring fire recorder species. Ecoscience, 2009, 16, 322-329.	1.4	16
100	The historical range of variability of fires in the Andean - Patagonian Nothofagus forest region. International Journal of Wildland Fire, 2008, 17, 724.	2.4	91
101	Variability in fire - climate relationships in ponderosa pine forests in the Colorado Front Range. International Journal of Wildland Fire, 2008, 17, 50.	2.4	33
102	EFFECT OF PRIOR DISTURBANCES ON THE EXTENT AND SEVERITY OF WILDFIRE IN COLORADO SUBALPINE FORESTS. Ecology, 2007, 88, 759-769.	3.2	136
103	Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos, 2007, 116, 1983-1994.	2.7	259
104	A field experiment on climatic and herbivore impacts on post-fire tree regeneration in north-western Patagonia. Journal of Ecology, 2007, 95, 771-779.	4.0	53
105	Fire, fuels and restoration of ponderosa pine?Douglas fir forests in the Rocky Mountains, USA. Journal of Biogeography, 2007, 34, 251-269.	3.0	99
106	A Spatially-Explicit Reconstruction of Historical Fire Occurrence in the Ponderosa Pine Zone of the Colorado Front Range. Ecosystems, 2007, 10, 311-323.	3.4	65
107	Climatic influences on fire inAraucaria araucana–Nothofagusforests in the Andean cordillera of south-central Chile. Ecoscience, 2006, 13, 342-350.	1.4	40
108	Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. Forest Ecology and Management, 2006, 228, 98-107.	3.2	108

#	Article	IF	CITATIONS
109	Are Wildfire Mitigation and Restoration of Historic Forest Structure Compatible? A Spatial Modeling Assessment. Annals of the American Association of Geographers, 2006, 96, 455-470.	3.0	13
110	Tree regeneration responses toChusquea montanabamboo dieâ€off in a subalpineNothofagusforest in the southern Andes. Journal of Vegetation Science, 2006, 17, 19-28.	2.2	39
111	Ecological effects of changes in fire regimes in <i>Pinus ponderosa</i> ecosystems in the Colorado Front Range. Journal of Vegetation Science, 2006, 17, 705-718.	2.2	59
112	Spatial and temporal variation in historic fire regimes in subalpine forests across the Colorado Front Range in Rocky Mountain National Park, Colorado, USA. Journal of Biogeography, 2006, 33, 631-647.	3.0	162
113	Relationships of subalpine forest fires in the Colorado Front Range with interannual and multidecadal-scale climatic variation. Journal of Biogeography, 2006, 33, 833-842.	3.0	93
114	Influences of infrequent fire, elevation and pre-fire vegetation on the persistence of quaking aspen (Populus tremuloides Michx.) in the Flat Tops area, Colorado, USA. Journal of Biogeography, 2006, 33, 1397-1413.	3.0	24
115	ENSO AND PDO VARIABILITY AFFECT DROUGHT-INDUCED FIRE OCCURRENCE IN ROCKY MOUNTAIN SUBALPINE FORESTS. , 2005, 15, 2000-2014.		143
116	Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. Journal of Biogeography, 2005, 32, 1187-1202.	3.0	89
117	LANDSCAPE INFLUENCES ON OCCURRENCE AND SPREAD OF WILDFIRES IN PATAGONIAN FORESTS AND SHRUBLANDS. Ecology, 2005, 86, 2705-2715.	3.2	211
118	MULTIPLE DISTURBANCE INTERACTIONS AND DROUGHT INFLUENCE FIRE SEVERITY IN ROCKY MOUNTAIN SUBALPINE FORESTS. Ecology, 2005, 86, 3018-3029.	3.2	190
119	SPATIOTEMPORAL INFLUENCES OF CLIMATE ON ALTITUDINAL TREELINE IN NORTHERN PATAGONIA. Ecology, 2004, 85, 1284-1296.	3.2	164
120	THE PERSISTENCE OF QUAKING ASPEN (POPULUS TREMULOIDES) IN THE GRAND MESA AREA, COLORADO. , 2004, 14, 1603-1614.		80
121	The Interaction of Fire, Fuels, and Climate across Rocky Mountain Forests. BioScience, 2004, 54, 661.	4.9	621
122	NOTHOFAGUS REGENERATION DYNAMICS IN SOUTH-CENTRAL CHILE: A TEST OF A GENERAL MODEL. Ecological Monographs, 2004, 74, 615-634.	5.4	55
123	Effects of fire and spruce beetle outbreak legacies on the disturbance regime of a subalpine forest in Colorado. Journal of Biogeography, 2003, 30, 1445-1456.	3.0	105
124	Subalpine forest development following a blowdown in the Mount Zirkel Wilderness, Colorado. Journal of Vegetation Science, 2003, 14, 653-660.	2.2	40
125	INTERACTIONS BETWEEN FIRE AND SPRUCE BEETLES IN A SUBALPINE ROCKY MOUNTAIN FOREST LANDSCAPE. Ecology, 2003, 84, 362-371.	3.2	137
126	Subalpine forest development following a blowdown in the Mount Zirkel Wilderness, Colorado. Journal of Vegetation Science, 2003, 14, 653.	2.2	9

#	Article	IF	CITATIONS
127	Effect of vegetation on the impact of a severe blowdown in the southern Rocky Mountains, USA. Forest Ecology and Management, 2002, 168, 63-75.	3.2	64
128	Influences of fire history and topography on the pattern of a severe wind blowdown in a Colorado subalpine forest. Journal of Ecology, 2002, 90, 806-819.	4.0	102
129	Title is missing!. Plant Ecology, 2002, 161, 59-73.	1.6	100
130	Title is missing!. Plant Ecology, 2002, 163, 187-207.	1.6	38
131	Subalpine forest damage from a severe windstorm in northern Colorado. Canadian Journal of Forest Research, 2001, 31, 2089-2097.	1.7	44
132	Climatic and human influences on fire history in Pike National Forest, central Colorado. Canadian Journal of Forest Research, 2001, 31, 1526-1539.	1.7	65
133	Fire history in high elevation subalpine forests in the Colorado Front Range. Ecoscience, 2001, 8, 369-380.	1.4	39
134	Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Global Ecology and Biogeography, 2001, 10, 315-326.	5.8	150
135	Rainfall variability, fire and vegetation dynamics in neotropical montane ecosystems in north-western Argentina. Journal of Biogeography, 2000, 27, 1107-1121.	3.0	80
136	ENSO EFFECTS ON TEMPERATURE AND PRECIPITATION OF THE PATAGONIAN-ANDEAN REGION: IMPLICATIONS FOR BIOGEOGRAPHY. Physical Geography, 2000, 21, 223-243.	1.4	43
137	CLIMATIC AND HUMAN INFLUENCES ON FIRE REGIMES IN PONDEROSA PINE FORESTS IN THE COLORADO FRONT RANGE. , 2000, 10, 1178-1195.		338
138	EFFECTS OF CLIMATIC VARIABILITY ON FACILITATION OF TREE ESTABLISHMENT IN NORTHERN PATAGONIA. Ecology, 2000, 81, 1914-1924.	3.2	205
139	Effects of Climatic Variability on Facilitation of Tree Establishment in Northern Patagonia. Ecology, 2000, 81, 1914.	3.2	9
140	FIRE HISTORY IN NORTHERN PATAGONIA: THE ROLES OF HUMANS AND CLIMATIC VARIATION. Ecological Monographs, 1999, 69, 47-67.	5.4	233
141	Fire-induced changes in northern Patagonian landscapes. , 1999, 14, 1-15.		93
142	Fire History in Northern Patagonia: The Roles of Humans and Climatic Variation. Ecological Monographs, 1999, 69, 47.	5.4	16
143	Facilitation by nurse shrubs of resprouting behavior in a postâ€fire shrubland in northern Patagonia, Argentina. Journal of Vegetation Science, 1998, 9, 693-698.	2.2	84
144	Disturbance and climatic influences on age structure of ponderosa pine at the pine/grassland ecotone, Colorado Front Range. Journal of Biogeography, 1998, 25, 743-755.	3.0	87

#	Article	IF	CITATIONS
145	INFLUENCES OF LARGE-SCALE CLIMATIC VARIABILITY ON EPISODIC TREE MORTALITY IN NORTHERN PATAGONIA. Ecology, 1998, 79, 2624-2640.	3.2	141
146	Influences of Large-Scale Climatic Variability on Episodic Tree Mortality in Northern Patagonia. Ecology, 1998, 79, 2624.	3.2	6
147	BLOWDOWN HISTORY AND LANDSCAPE PATTERNS IN THE ANDES OF TIERRA DEL FUEGO, ARGENTINA. Ecology, 1997, 78, 678-692.	3.2	88
148	Improving estimates of total tree ages based on increment core samples. Ecoscience, 1997, 4, 534-542.	1.4	100
149	Climatic influences on fire regimes along a rain forestâ€ŧoâ€ĸeric woodland gradient in northern Patagonia, Argentina. Journal of Biogeography, 1997, 24, 35-47.	3.0	175
150	Attributes of reliable long-term landscape-scale studies: Malpractice insurance for landscape ecologists. Environmental Monitoring and Assessment, 1995, 36, 1-25.	2.7	45
151	A DENDROCHRONOLOGICAL METHOD OF STUDYING TREE MORTALITY PATTERNS. Physical Geography, 1994, 15, 529-542.	1.4	67
152	Climatic Influences on the Growth of Subalpine Trees in the Colorado Front Range. Ecology, 1994, 75, 1450-1462.	3.2	122
153	Structure and tree-fall gap dynamics of old-growthNothofagusforests in Tierra del Fuego, Argentina. Journal of Vegetation Science, 1993, 4, 641-654.	2.2	150
154	DIVERSITY AND DISTURBANCE IN A COLORADO SUBALPINE FOREST. Physical Geography, 1992, 13, 240-249.	1.4	7
155	Ecological Impacts of Introduced Animals in Nahuel Huapi National Park, Argentina. Conservation Biology, 1992, 6, 71-83.	4.7	108
156	FIRE HISTORY OF A PONDEROSA PINE/DOUGLAS FIR FOREST IN THE COLORADO FRONT RANGE. Physical Geography, 1992, 13, 133-148.	1.4	40
157	Forest development in canopy gaps in old-growth beech (Nothofagus) forests, New Zealand. Journal of Vegetation Science, 1991, 2, 679-690.	2.2	67
158	The Response of Subalpine Forests to Spruce Beetle Outbreak in Colorado. Ecology, 1991, 72, 213-231.	3.2	218
159	Spruce Beetles and Fires in the Nineteenth-Century Subalpine Forests of Western Colorado, U.S.A Arctic and Alpine Research, 1990, 22, 65.	1.3	89
160	Recent Vegetation Changes along the Forest/Steppe Ecotone of Northern Patagonia. Annals of the American Association of Geographers, 1988, 78, 93-111.	3.0	150
161	Steppe Expansion in Patagonia?. Quaternary Research, 1988, 30, 331-338.	1.7	48
162	Post-fire stand development of Austrocedrus-Nothofagus forests in northern Patagonia. Plant Ecology, 1987, 71, 113-126.	1.2	109

#	ARTICLE	IF	CITATIONS
163	Treefalls and the Coexistence of Conifers in Subalpine Forests of the Central Rockies. Ecology, 1986, 67, 644-649.	3.2	125
164	Age and Size Structure of Subalpine Forests in the Colorado Front Range. Bulletin of the Torrey Botanical Club, 1986, 113, 225.	0.6	128
165	ANTHROPOGENIC DISTURBANCE AND RECOVERY PATTERNS IN MONTANE FORESTS, COLORADO FRONT RANGE. Physical Geography, 1986, 7, 1-24.	1.4	76
166	Regeneration Patterns in Araucaria araucana Forests in Chile. Journal of Biogeography, 1982, 9, 11.	3.0	106
167	Regeneration patterns in southern rata (Metrosideros umbellata) — kamahi (Weinmannia racemosa) forest in central Westland, New Zealand. New Zealand Journal of Botany, 1982, 20, 55-72.	1.1	57
168	The Effects of Introduced Wild Animals on New Zealand Forests. Annals of the American Association of Geographers, 1982, 72, 372-397.	3.0	56
169	FIRE SEVERITY UNAFFECTED BY SPRUCE BEETLE OUTBREAK IN SPRUCE-FIR FORESTS IN SOUTHWESTERN COLORADO. , 0, , .		1
170	Burn severity in Araucaria araucana forests of northern Patagonia: tree mortality scales up to burn severity at plot scale, mediated by topography and climatic context. Plant Ecology, 0, , .	1.6	3
171	Fire effects on diversity patterns of the understory communities of Araucaria-Nothofagus forests. Plant Ecology, 0, , .	1.6	2