Jay T Groves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3850132/publications.pdf Version: 2024-02-01

		30070	33894
166	11,473	54	99
papers	citations	h-index	g-index
177	177	177	10787
all docs	docs citations	times ranked	citing authors

LAV T CROVES

#	Article	IF	CITATIONS
1	TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunology, 2010, 11, 90-96.	14.5	571
2	Altered TCR Signaling from Geometrically Repatterned Immunological Synapses. Science, 2005, 310, 1191-1193.	12.6	491
3	Conformational Coupling across the Plasma Membrane in Activation of the EGF Receptor. Cell, 2013, 152, 543-556.	28.9	423
4	Micropattern Formation in Supported Lipid Membranes. Accounts of Chemical Research, 2002, 35, 149-157.	15.6	341
5	Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2. Science, 2010, 327, 1380-1385.	12.6	301
6	Architecture and Function of Membrane Proteins in Planar Supported Bilayers:Â A Study with Photosynthetic Reaction Centersâ€. Biochemistry, 1996, 35, 14773-14781.	2.5	291
7	A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science, 2019, 363, 1098-1103.	12.6	268
8	Molecular mechanisms in signal transduction at the membrane. Nature Structural and Molecular Biology, 2010, 17, 659-665.	8.2	248
9	Engineering of a synthetic electron conduit in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19213-19218.	7.1	248
10	A Mechanism for Tunable Autoinhibition in the Structure of a Human Ca2+/Calmodulin- Dependent Kinase II Holoenzyme. Cell, 2011, 146, 732-745.	28.9	230
11	Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell, 2018, 174, 672-687.e27.	28.9	229
12	Supported planar bilayers in studies on immune cell adhesion and communication. Journal of Immunological Methods, 2003, 278, 19-32.	1.4	228
13	Curvature-Modulated Phase Separation in Lipid Bilayer Membranes. Langmuir, 2006, 22, 5095-5099.	3.5	222
14	Membrane-dependent signal integration by the Ras activator Son of sevenless. Nature Structural and Molecular Biology, 2008, 15, 452-461.	8.2	222
15	Receptor Signaling Clusters in the Immune Synapse. Annual Review of Biophysics, 2012, 41, 543-556.	10.0	215
16	Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature, 2004, 427, 139-141.	27.8	205
17	Noncovalent Cell Surface Engineering: Incorporation of Bioactive Synthetic Glycopolymers into Cellular Membranes. Journal of the American Chemical Society, 2008, 130, 5947-5953.	13.7	185
18	T Cell Receptor Microcluster Transport through Molecular Mazes Reveals Mechanism of Translocation. Biophysical Journal, 2008, 94, 3286-3292.	0.5	158

#	Article	IF	CITATIONS
19	H-Ras forms dimers on membrane surfaces via a protein–protein interface. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2996-3001.	7.1	150
20	Substrateâ^'Membrane Interactions:  Mechanisms for Imposing Patterns on a Fluid Bilayer Membrane. Langmuir, 1998, 14, 3347-3350.	3.5	146
21	Kinetic Control of Histidine-Tagged Protein Surface Density on Supported Lipid Bilayers. Langmuir, 2008, 24, 4145-4149.	3.5	146
22	Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. ELife, 2013, 2, e00778.	6.0	142
23	Cluster size regulates protein sorting in the immunological synapse. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12729-12734.	7.1	136
24	Control of Cell Adhesion and Growth with Micropatterned Supported Lipid Membranes. Langmuir, 2001, 17, 5129-5133.	3.5	126
25	Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics. Science, 2014, 345, 50-54.	12.6	126
26	Signaling clusters in the cell membrane. Current Opinion in Cell Biology, 2011, 23, 370-376.	5.4	124
27	Colorimetric Bio-Barcode Amplification Assay for Cytokines. Analytical Chemistry, 2005, 77, 6985-6988.	6.5	120
28	Structure and Dynamics of Supported Intermembrane Junctions. Biophysical Journal, 2004, 86, 905-912.	0.5	116
29	Spatial organization and signal transduction at intercellular junctions. Nature Reviews Molecular Cell Biology, 2010, 11, 342-352.	37.0	114
30	Detection of proteins using a colorimetric bio-barcode assay. Nature Protocols, 2007, 2, 1438-1444.	12.0	113
31	Curvature and spatial organization in biological membranes. Soft Matter, 2007, 3, 24-33.	2.7	111
32	Fluorescence Imaging of Membrane Dynamics. Annual Review of Biomedical Engineering, 2008, 10, 311-338.	12.3	111
33	A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces. Nano Letters, 2009, 9, 2077-2082.	9.1	111
34	Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15892-15897.	7.1	109
35	Writing and Erasing Barriers to Lateral Mobility into Fluid Phospholipid Bilayers. Langmuir, 1999, 15, 3893-3896.	3.5	106
36	Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8218-8223.	7.1	101

#	Article	IF	CITATIONS
37	Formation and Spatio-Temporal Evolution of Periodic Structures in Lipid Bilayers. Journal of the American Chemical Society, 2005, 127, 36-37.	13.7	90
38	Modulation of T cell signaling by the actin cytoskeleton. Journal of Cell Science, 2013, 126, 1049-1058.	2.0	90
39	Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. ELife, 2014, 3, e01610.	6.0	87
40	A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20332-20337.	7.1	86
41	Using patterned supported lipid membranes to investigate the role of receptor organization in in in intercellular signaling. Nature Protocols, 2011, 6, 523-539.	12.0	86
42	Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nature Methods, 2012, 9, 1189-1191.	19.0	86
43	E-cadherin junction formation involves an active kinetic nucleation process. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10932-10937.	7.1	84
44	Lipid Lateral Mobility and Membrane Phase Structure Modulation by Protein Binding. Journal of the American Chemical Society, 2006, 128, 15221-15227.	13.7	83
45	Synthetic Analogues of Glycosylphosphatidylinositol-Anchored Proteins and Their Behavior in Supported Lipid Bilayers. Journal of the American Chemical Society, 2007, 129, 11543-11550.	13.7	79
46	Quantitative Fluorescence Microscopy Using Supported Lipid Bilayer Standards. Biophysical Journal, 2008, 95, 2512-2519.	0.5	79
47	Bending Mechanics and Molecular Organization in Biological Membranes. Annual Review of Physical Chemistry, 2007, 58, 697-717.	10.8	78
48	Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Molecular Biology of the Cell, 2015, 26, 4033-4045.	2.1	76
49	Investigating Cell Surface Galectin-Mediated Cross-Linking on Glycoengineered Cells. Journal of the American Chemical Society, 2012, 134, 9549-9552.	13.7	70
50	Mapping the stochastic sequence of individual ligand-receptor binding events to cellular activation: T cells act on the rare events. Science Signaling, 2019, 12, .	3.6	70
51	K-Ras4B Remains Monomeric on Membranes over aÂWide Range ofÂSurface Densities and Lipid Compositions. Biophysical Journal, 2018, 114, 137-145.	0.5	69
52	Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses. PLoS ONE, 2010, 5, e11878.	2.5	66
53	Synthesis of Lipidated Green Fluorescent Protein and Its Incorporation in Supported Lipid Bilayers. Journal of the American Chemical Society, 2005, 127, 14383-14387.	13.7	65
54	Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation. PLoS ONE, 2012, 7, e30704.	2.5	65

#	Article	IF	CITATIONS
55	EGFR family and Src family kinase interactions: mechanics matters?. Current Opinion in Cell Biology, 2018, 51, 97-102.	5.4	64
56	Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12190-12195.	7.1	62
57	Engineering supported membranes for cell biology. Medical and Biological Engineering and Computing, 2010, 48, 955-963.	2.8	60
58	Supported Membrane Formation, Characterization, Functionalization, and Patterning for Application in Biological Science and Technology. Current Protocols in Chemical Biology, 2010, 2, 235-269.	1.7	57
59	Characterization of dynamic actin associations with T-cell receptor microclusters in primary T cells. Journal of Cell Science, 2012, 125, 735-742.	2.0	55
60	Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nature Chemical Biology, 2005, 1, 283-289.	8.0	54
61	Lipid Mobility and Molecular Binding in Fluid Lipid Membranes. Journal of the American Chemical Society, 2005, 127, 2826-2827.	13.7	54
62	Electrostatically Targeted Intermembrane Lipid Exchange with Micropatterned Supported Membranesâ€. Langmuir, 2003, 19, 1606-1610.	3.5	53
63	Live Cell Plasma Membranes Do Not Exhibit a Miscibility Phase Transition over a Wide Range of Temperatures. Journal of Physical Chemistry B, 2015, 119, 4450-4459.	2.6	53
64	Optical Techniques for Imaging Membrane Topography. Cell Biochemistry and Biophysics, 2004, 41, 391-414.	1.8	52
65	Cell membrane array fabrication and assay technology. BMC Biotechnology, 2005, 5, 18.	3.3	52
66	Hydrodynamic Damping of Membrane Thermal Fluctuations near Surfaces Imaged by Fluorescence Interference Microscopy. Physical Review Letters, 2006, 96, 118101.	7.8	51
67	Supported Membranes Embedded with Fixed Arrays of Gold Nanoparticles. Nano Letters, 2011, 11, 4912-4918.	9.1	51
68	Hierarchical Assembly of Model Cell Surfaces:Â Synthesis of Mucin Mimetic Polymers and Their Display on Supported Bilayers. Journal of the American Chemical Society, 2007, 129, 5462-5471.	13.7	50
69	Protein patterns at lipid bilayer junctions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12798-12803.	7.1	49
70	One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nature Structural and Molecular Biology, 2016, 23, 838-846.	8.2	49
71	Interfacial Forces Dictate the Pathway of Phospholipid Vesicle Adsorption onto Silicon Dioxide Surfaces. Langmuir, 2018, 34, 1775-1782.	3.5	49
72	Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophysical Journal, 2021, 120, 1257-1265.	0.5	49

#	Article	IF	CITATIONS
73	EphA2 Receptor Activation by Monomeric Ephrin-A1 on Supported Membranes. Biophysical Journal, 2011, 101, 2731-2739.	0.5	47
74	Scanning Probe Lithography on Fluid Lipid Membranes. Journal of the American Chemical Society, 2004, 126, 13878-13879.	13.7	46
75	Electrostatic readout of DNA microarrays with charged microspheres. Nature Biotechnology, 2008, 26, 825-830.	17.5	45
76	Monitoring Lipid Anchor Organization in Cell Membranes by PIE-FCCS. Journal of the American Chemical Society, 2012, 134, 10833-10842.	13.7	43
77	Materials Science of Supported Lipid Membranes. MRS Bulletin, 2006, 31, 507-512.	3.5	42
78	Molecular topography imaging by intermembrane fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14147-14152.	7.1	41
79	Spatial Organization of EphA2 at the Cell-Cell Interface Modulates Trans-Endocytosis of EphrinA1. Biophysical Journal, 2014, 106, 2196-2205.	0.5	41
80	Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate. Nature Communications, 2017, 8, 15061.	12.8	41
81	Stochastic geometry sensing and polarization in a lipid kinase–phosphatase competitive reaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15013-15022.	7.1	41
82	Phase Segregation on Different Length Scales in a Model Cell Membrane System. Journal of Physical Chemistry B, 2005, 109, 19960-19969.	2.6	40
83	Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5696-E5705.	7.1	40
84	The Membrane Environment Can Promote or Suppress Bistability in Cell Signaling Networks. Journal of Physical Chemistry B, 2012, 116, 3630-3640.	2.6	39
85	How the T cell signaling network processes information to discriminate between self and agonist ligands. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26020-26030.	7.1	39
86	Raf promotes dimerization of the Ras G-domain with increased allosteric connections. Proceedings of the United States of America, 2021, 118, .	7.1	39
87	Topographical Imaging of an Intermembrane Junction by Combined Fluorescence Interference and Energy Transfer Microscopies. Journal of the American Chemical Society, 2001, 123, 12414-12415.	13.7	38
88	Sustained α -catenin Activation at E-cadherin Junctions in the Absence of Mechanical Force. Biophysical Journal, 2016, 111, 1044-1052.	0.5	37
89	Switch-like activation of Bruton's tyrosine kinase by membrane-mediated dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10798-10803.	7.1	37
90	A Fluid Membrane-Based Soluble Ligand-Display System for Live-Cell Assays. ChemBioChem, 2006, 7, 436-440.	2.6	35

#	Article	IF	CITATIONS
91	Covalent Ras Dimerization on Membrane Surfaces through Photosensitized Oxidation. Journal of the American Chemical Society, 2016, 138, 1800-1803.	13.7	35
92	A two-component protein condensate of the EGFR cytoplasmic tail and Grb2 regulates Ras activation by SOS at the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122531119.	7.1	33
93	Control of Antigen Presentation with a Photoreleasable Agonist Peptide. Journal of the American Chemical Society, 2006, 128, 15354-15355.	13.7	32
94	Like-charge interactions between colloidal particles are asymmetric with respect to sign. Soft Matter, 2009, 5, 1931.	2.7	31
95	Hybrid Proteinâ^'Lipid Patterns from Aluminum Templates. Langmuir, 2007, 23, 2052-2057.	3.5	30
96	Neuronal Activation by GPI-Linked Neuroligin-1 Displayed in Synthetic Lipid Bilayer Membranes. Langmuir, 2005, 21, 10693-10698.	3.5	29
97	Nanoscale Obstacle Arrays Frustrate Transport of EphA2–Ephrin-A1 Clusters in Cancer Cell Lines. Nano Letters, 2013, 13, 3059-3064.	9.1	28
98	DNA-Mediated Assembly of Protein Heterodimers on Membrane Surfaces. Journal of the American Chemical Society, 2013, 135, 5012-5016.	13.7	27
99	Allosteric Modulation of Grb2 Recruitment to the Intrinsically Disordered Scaffold Protein, LAT, by Remote Site Phosphorylation. Journal of the American Chemical Society, 2017, 139, 18009-18015.	13.7	27
100	Hybrid Live Cell–Supported Membrane Interfaces for Signaling Studies. Annual Review of Biophysics, 2019, 48, 537-562.	10.0	27
101	Molecular Organization and Signal Transduction at Intermembrane Junctions. Angewandte Chemie - International Edition, 2005, 44, 3524-3538.	13.8	26
102	Surface Binding Affinity Measurements from Order Transitions of Lipid Membrane-Coated Colloidal Particles. Analytical Chemistry, 2006, 78, 174-180.	6.5	25
103	Effect of Support Corrugation on Silica Xerogelâ^'Supported Phase-Separated Lipid Bilayers. Langmuir, 2009, 25, 3713-3717.	3.5	24
104	Lateral Reorganization of Fluid Lipid Membranes in Response to the Electric Field Produced by a Buried Charge. Journal of Physical Chemistry B, 2000, 104, 11409-11415.	2.6	23
105	Spatial mutation of the T cell immunological synapse. Current Opinion in Chemical Biology, 2006, 10, 544-550.	6.1	23
106	Bending-mediated superstructural organizations in phase-separated lipid membranes. New Journal of Physics, 2010, 12, 095001.	2.9	23
107	Dynamic Scaling Analysis of Molecular Motion within the LAT:Grb2:SOS Protein Network onÂMembranes. Biophysical Journal, 2017, 113, 1807-1813.	0.5	23
108	Electric Field Effects in Multicomponent Fluid Lipid Membranes. Journal of Physical Chemistry B, 2000, 104, 119-124.	2.6	22

#	Article	IF	CITATIONS
109	Many-Particle Tracking with Nanometer Resolution in Three Dimensions by Reflection Interference Contrast Microscopy. Langmuir, 2005, 21, 6430-6435.	3.5	22
110	Monitoring the Waiting Time Sequence of Single Ras GTPase Activation Events Using Liposome Functionalized Zero-Mode Waveguides. Nano Letters, 2016, 16, 2890-2895.	9.1	22
111	Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. ELife, 2021, 10, .	6.0	22
112	Size-Based Chromatography of Signaling Clusters in a Living Cell Membrane. Nano Letters, 2014, 14, 2293-2298.	9.1	21
113	Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of Lowâ€Rigidity, Supported Lipid Membranes. Advanced Healthcare Materials, 2017, 6, 1700243.	7.6	21
114	Single Molecule Kinetics of ENTH Binding to Lipid Membranes. Journal of Physical Chemistry B, 2012, 116, 5122-5131.	2.6	20
115	Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic Peptide. Biophysical Journal, 2016, 110, 176-187.	0.5	20
116	Membrane Mechanics in Living Cells. Developmental Cell, 2019, 48, 15-16.	7.0	19
117	Nonequilibrium Adhesion Patterns at Lipid Bilayer Junctions. Journal of Physical Chemistry B, 2004, 108, 649-657.	2.6	18
118	Nonequilibrium Patterns of Cholesterol-Rich Chemical Heterogenieties within Single Fluid Supported Phospholipid Bilayer Membranes. Langmuir, 2006, 22, 5374-5384.	3.5	18
119	Patterned Two-Photon Photoactivation Illuminates Spatial Reorganization in Live Cells. Journal of Physical Chemistry A, 2011, 115, 3867-3875.	2.5	18
120	Membrane Association Transforms an Inert Anti-TCRβ Fab' Ligand into a Potent T Cell Receptor Agonist. Biophysical Journal, 2020, 118, 2879-2893.	0.5	18
121	EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer–cell interfaces. Science Advances, 2021, 7, .	10.3	18
122	Analysis of Shape, Fluctuations, and Dynamics in Intermembrane Junctions. Biophysical Journal, 2006, 91, 3600-3606.	0.5	17
123	Molecular Orientation of Membrane-Anchored Mucin Glycoprotein Mimics. Journal of Physical Chemistry B, 2007, 111, 12133-12135.	2.6	17
124	The physical chemistry of membrane curvature. Nature Chemical Biology, 2009, 5, 783-784.	8.0	17
125	Interrogating the T cell synapse with patterned surfaces and photoactivated proteins. Current Opinion in Immunology, 2007, 19, 722-727.	5.5	14
126	Graphene-Templated Supported Lipid Bilayer Nanochannels. Nano Letters, 2016, 16, 5022-5026.	9.1	14

#	Article	IF	CITATIONS
127	A Microbead Supported Membrane-Based Fluorescence Imaging Assay Reveals Intermembrane Receptor–Ligand Complex Dimension with Nanometer Precision. Langmuir, 2016, 32, 6775-6780.	3.5	14
128	Dynamic Organization of Myristoylated Src in the Live Cell Plasma Membrane. Journal of Physical Chemistry B, 2016, 120, 867-876.	2.6	14
129	Multicomponent Supported Membrane Microarray for Monitoring Spatially Resolved Cellular Signaling Reactions. Advanced Biology, 2018, 2, 1800015.	3.0	14
130	Discrete Arrays of Liquidâ€Crystalâ€Supported Proteolipid Monolayers as Phantom Cell Surfaces. ChemPhysChem, 2008, 9, 1688-1692.	2.1	13
131	Electrical Manipulation of Supported Lipid Membranes by Embedded Electrodes. Langmuir, 2008, 24, 6189-6193.	3.5	13
132	Spatiomechanical Modulation of EphB4-Ephrin-B2 Signaling in Neural Stem Cell Differentiation. Biophysical Journal, 2018, 115, 865-873.	0.5	13
133	Learning the Chemical Language of Cell-Surface Interactions. Science Signaling, 2005, 2005, pe45-pe45.	3.6	12
134	Coupled Membrane Fluctuations and Protein Mobility in Supported Intermembrane Junctions. Journal of Physical Chemistry B, 2006, 110, 8513-8516.	2.6	11
135	Roles of the cytoskeleton in regulating EphA2 signals. Communicative and Integrative Biology, 2010, 3, 454-457.	1.4	11
136	Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
137	Fabrication of Multicomponent, Spatially Segregated DNA and Protein-Functionalized Supported Membrane Microarray. Langmuir, 2018, 34, 9781-9788.	3.5	10
138	Size-dependent, stochastic nature of lipid exchange between nano-vesicles and model membranes. Nanoscale, 2016, 8, 13513-13520.	5.6	9
139	Relating cellular signaling timescales to single-molecule kinetics: A first-passage time analysis of Ras activation by SOS. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
140	Height, but not binding epitope, affects the potency of synthetic TCR agonists. Biophysical Journal, 2021, 120, 3869-3880.	0.5	8
141	The Biomolecular Interface. Langmuir, 2003, 19, 1449-1450.	3.5	7
142	CHEMISTRY: Unveiling the Membrane Domains. Science, 2006, 313, 1901-1902.	12.6	7
143	Ratiometric Imaging of the T-Cell Actin Cytoskeleton Reveals the Nature of Receptor-Induced Cytoskeletal Enrichment. Biophysical Journal, 2013, 105, L11-L13.	0.5	7
144	Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting. ELife, 2017, 6, .	6.0	7

#	Article	IF	CITATIONS
145	Stochasticity and positive feedback enable enzyme kinetics at the membrane to sense reaction size. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
146	Glycans' imprints. Nature Materials, 2013, 12, 96-97.	27.5	5
147	Membrane array technology for drug discovery. Current Opinion in Drug Discovery & Development, 2002, 5, 606-12.	1.9	5
148	Kinetic Pathways of Phase Ordering in Lipid Raft Model Systems. Journal of Physical Chemistry B, 2006, 110, 8416-8421.	2.6	4
149	Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers. Langmuir, 2018, 34, 10764-10773.	3.5	4
150	Membrane anchoring facilitates colocalization of enzymes in plant cytochrome P450 redox systems. Communications Biology, 2021, 4, 1057.	4.4	4
151	Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophysical Journal, 2022, 121, 1897-1908.	0.5	3
152	Micropatterning fluid membranes. Advanced Materials, 1997, 9, 1121-1123.	21.0	2
153	Stochastic Fluctuation Sensing in a Bistable Phosphatidylinositol-Based Reaction Diffusion System. Biophysical Journal, 2016, 110, 421a.	0.5	1
154	Cell Adhesion: Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of Lowâ€Rigidity, Supported Lipid Membranes (Adv. Healthcare Mater. 10/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	1
155	Activation Dependent Organization of T Cell Membranes: A FCCS Study. Biophysical Journal, 2009, 96, 451a.	0.5	Ο
156	Probing Spatial Organization in Cell Membrane at the Immunological Synapse. Biophysical Journal, 2010, 98, 688a.	0.5	0
157	Receptor Cluster Size Affects Signaling in Breast Epithelial Cancer Cells. Biophysical Journal, 2010, 98, 493a-494a.	0.5	0
158	Gradient Distribution of LFA-1 cluster Size in the Immunological Synapse. Biophysical Journal, 2011, 100, 253a.	0.5	0
159	EphA2-Ephrina1 Signaling and PI(4,5)P2 Spatial Organization on Breast Cancer Cells. Biophysical Journal, 2012, 102, 301a-302a.	0.5	Ο
160	Clustering of Ras on Membrane Surfaces Independent of Lipid Anchor Effects. Biophysical Journal, 2013, 104, 97a-98a.	0.5	0
161	Restricting EphA2 Receptor Movement Affects Internalization and Signaling in Living Cells. Biophysical Journal, 2013, 104, 27a.	0.5	0
162	Single Molecule Measurements of TCR Triggering in Self-Reactive T Cells. Biophysical Journal, 2014, 106, 520a.	0.5	0

#	Article	IF	CITATIONS
163	Direct, Single Molecule, Cell-by-Cell Observation of Molecular Kinetics and Thermodynamics in Early Lymphocyte Signaling. Biophysical Journal, 2014, 106, 19a.	0.5	Ο
164	Live and Simultaneous Readout of NFAT and ERK Activation in T Cells Reveals Multiple Dimensions of TCR Signaling. Biophysical Journal, 2019, 116, 530a.	0.5	0
165	Total Reconstitution of Receptor-Mediated Ras Activation by SOS in Vitro Reveals Kinetic and Conformational Layers of Regulation in MAPK Signaling. Biophysical Journal, 2019, 116, 531a-532a.	0.5	0
166	Bruton's Tyrosine Kinase Membrane Dynamics and Signaling. Biophysical Journal, 2020, 118, 560a-561a.	0.5	0