
Morten Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3849229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of <i>ATG8/LC3</i> enhances wound-induced somatic reprogramming in <i>Physcomitrium patens</i> . Autophagy, 2022, 18, 1463-1466.	9.1	7
2	mRNA Decapping Factors LSM1 and PAT Paralogs Are Involved in Turnip Mosaic Virus Viral Infection. Molecular Plant-Microbe Interactions, 2022, 35, 125-130.	2.6	7
3	Plant autoimmunity—fresh insights into an old phenomenon. Plant Physiology, 2022, 188, 1419-1434.	4.8	15
4	The <i>Arabidopsis thaliana</i> mRNA decay factor PAT1 functions in osmotic stress responses and decaps ABAâ€responsive genes. FEBS Letters, 2021, 595, 253-263.	2.8	9
5	Genome-wide analyses across Viridiplantae reveal the origin and diversification of small RNA pathway-related genes. Communications Biology, 2021, 4, 412.	4.4	22
6	Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. Npj Biofilms and Microbiomes, 2021, 7, 82.	6.4	45
7	The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology and Evolution, 2020, 4, 1220-1231.	7.8	84
8	Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. EMBO Journal, 2020, 39, e103315.	7.8	51
9	The Draft Genome of Hariotina reticulata (Sphaeropleales, Chlorophyta) Provides Insight into the Evolution of Scenedesmaceae. Protist, 2019, 170, 125684.	1.5	1
10	The Draft Genome of the Small, Spineless Green Alga Desmodesmus costato-granulatus (Sphaeropleales, Chlorophyta). Protist, 2019, 170, 125697.	1.5	4
11	Molecular evidence for origin, diversification and ancient gene duplication of plant subtilases (SBTs). Scientific Reports, 2019, 9, 12485.	3.3	14
12	Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nature Plants, 2018, 4, 699-710.	9.3	43
13	DNA damage as a consequence of NLR activation. PLoS Genetics, 2018, 14, e1007235.	3.5	21
14	Chitin and Stress Induced Protein Kinase Activation. Methods in Molecular Biology, 2017, 1578, 185-194.	0.9	1
15	Chitin-Induced Responses in the Moss Physcomitrella patens. Methods in Molecular Biology, 2017, 1578, 317-324.	0.9	2
16	Matching NLR Immune Receptors to Autoimmunity in camta3 Mutants Using Antimorphic NLR Alleles. Cell Host and Microbe, 2017, 21, 518-529.e4.	11.0	63
17	Autophagy is required for gamete differentiation in the moss <i>Physcomitrella patens</i> . Autophagy, 2017, 13, 1939-1951.	9.1	47
18	Making sense of plant autoimmunity and â€~negative regulators'. FEBS Journal, 2016, 283, 1385-1391.	4.7	59

Morten Petersen

#	Article	IF	CITATIONS
19	MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis. Plant Cell, 2016, 28, 2866-2883.	6.6	166
20	An Innate Immunity Pathway in the Moss <i>Physcomitrella patens</i> Â. Plant Cell, 2016, 28, 1328-1342.	6.6	73
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	Transcriptome and Genome Size Analysis of the Venus Flytrap. PLoS ONE, 2015, 10, e0123887.	2.5	12
23	Retromer Contributes to Immunity-Associated Cell Death in Arabidopsis. Plant Cell, 2015, 27, 463-479.	6.6	67
24	The pearl millet mitogen-activated protein kinase PgMPK4 is involved in responses to downy mildew infection and in jasmonic- and salicylic acid-mediated defense. Plant Molecular Biology, 2015, 87, 287-302.	3.9	13
25	The <scp>mRNA</scp> decay factor <scp>PAT</scp> 1 functions in a pathway including <scp>MAP</scp> kinase 4 and immune receptor <scp>SUMM</scp> 2. EMBO Journal, 2015, 34, 593-608.	7.8	100
26	Signaling unmasked. Autophagy, 2014, 10, 520-521.	9.1	26
27	Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in <i>Arabidopsis</i> . Autophagy, 2014, 10, 1579-1587.	9.1	75
28	ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene <i>NCED3</i> in <i>Arabidopsis thaliana</i> . FEBS Open Bio, 2013, 3, 321-327.	2.3	182
29	Catalase and <i>NO CATALASE ACTIVITY1</i> Promote Autophagy-Dependent Cell Death in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 4616-4626.	6.6	101
30	MAP Kinase Cascades in Arabidopsis Innate Immunity. Frontiers in Plant Science, 2012, 3, 169.	3.6	171
31	Receptor-like kinase complexes in plant innate immunity. Frontiers in Plant Science, 2012, 3, 209.	3.6	74
32	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
33	Morphological classification of plant cell deaths. Cell Death and Differentiation, 2011, 18, 1241-1246.	11.2	481
34	Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death and Differentiation, 2011, 18, 1257-1262.	11.2	90
35	Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. Plant Signaling and Behavior, 2011, 6, 1425-1427.	2.4	26
36	Lazarus1, a DUF300 Protein, Contributes to Programmed Cell Death Associated with Arabidopsis acd11 and the Hypersensitive Response. PLoS ONE, 2010, 5, e12586.	2.5	25

Morten Petersen

#	Article	IF	CITATIONS
37	Arabidopsis MKS1 Is Involved in Basal Immunity and Requires an Intact N-terminal Domain for Proper Function. PLoS ONE, 2010, 5, e14364.	2.5	65
38	Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor. PLoS Pathogens, 2010, 6, e1001137.	4.7	170
39	Mitogen-Activated Protein Kinase Signaling in Plants. Annual Review of Plant Biology, 2010, 61, 621-649.	18.7	952
40	Self-consuming innate immunity in Arabidopsis. Autophagy, 2009, 5, 1206-1207.	9.1	6
41	Gene regulation by MAP kinase cascades. Current Opinion in Plant Biology, 2009, 12, 615-621.	7.1	114
42	Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 2009, 137, 773-783.	28.9	348
43	Identification of proteins interacting with Arabidopsis ACD11. Journal of Plant Physiology, 2009, 166, 661-666.	3.5	38
44	Coimmunoprecipitation (co-IP) of Nuclear Proteins and Chromatin Immunoprecipitation (ChIP) from <i>Arabidopsis</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5049.	0.3	38
45	Human GLTP and mutant forms of ACD11 suppress cell death in the <i>Arabidopsis acd11</i> mutant. FEBS Journal, 2008, 275, 4378-4388.	4.7	30
46	Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO Journal, 2008, 27, 2214-2221.	7.8	445
47	Downstream targets of WRKY33. Plant Signaling and Behavior, 2008, 3, 1033-1034.	2.4	23
48	A putative flavin-containing mono-oxygenase as a marker for certain defense and cell death pathways. Plant Science, 2006, 170, 614-623.	3.6	24
49	Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant Journal, 2006, 47, 532-546.	5.7	352
50	The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.	7.8	480
51	Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes and Development, 2002, 16, 490-502.	5.9	363
52	An Arabidopsis callose synthase. Plant Molecular Biology, 2002, 49, 559-566.	3.9	88
53	Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Molecular Biology, 2000, 44, 231-243.	3.9	149
54	Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 2000, 103, 1111-1120.	28.9	946

#	Article	IF	CITATIONS
55	Isolation and characterisation of a pod dehiscence zone-specific polygalacturonase fromBrassica napus. Plant Molecular Biology, 1996, 31, 517-527.	3.9	82