Donghong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3849178/publications.pdf

Version: 2024-02-01

136950 155660 3,558 130 32 55 h-index citations g-index papers 132 132 132 4194 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, e2107361.	21.0	89
2	Oleic acid-coated magnetic particles for removal of oil from produced water. Journal of Petroleum Science and Engineering, 2022, 211, 110088.	4.2	5
3	Simple thiazole-centered oligothiophene donor enables 15.4% efficiency all small molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 3009-3017.	10.3	28
4	Glassy structure affected cold-crystallization behavior and structure of poly(lactic acid). Journal of Polymer Research, 2022, 29, .	2.4	1
5	Resolving the Conflict between Strength and Toughness in Bioactive Silica–Polymer Hybrid Materials. ACS Nano, 2022, 16, 9748-9761.	14.6	7
6	Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability. Chemical Engineering Journal, 2022, 446, 137424.	12.7	14
7	Oligothiophene-based photovoltaic materials for organic solar cells: rise, plateau, and revival. Trends in Chemistry, 2022, 4, 773-791.	8.5	17
8	Nonfullerene acceptors from thieno[3,2-b]thiophene-fused naphthalene donor core with six-member-ring connection for efficient organic solar cells. Dyes and Pigments, 2021, 185, 108892.	3.7	14
9	Significantly enhanced thermal stability from a new kind of n-type organic semiconductor DFA4: a fully fused F8IC. Journal of Materials Chemistry C, 2021, 9, 13625-13629.	5.5	4
10	Structural control of self-healing silica–poly(tetrahydropyran)–poly(Îμ-caprolactone) hybrids. Journal of Materials Chemistry B, 2021, 9, 4400-4410.	5.8	4
11	Nonconjugated Terpolymer Acceptors with Two Different Fused-Ring Electron-Deficient Building Blocks for Efficient All-Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6442-6449.	8.0	28
12	Fluorination on electron-deficient units of benzothiadiazole-based donor-acceptor conjugated polymers for novel fullerene-based organic solar cells. Solar Energy, 2021, 220, 864-872.	6.1	7
13	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	8.2	51
14	Effect of alkylthiolated hetero-aromatic rings on the photovoltaic performance of benzodithiophene-based polymer/fullerene solar cells. Synthetic Metals, 2021, 276, 116756.	3.9	4
15	An <scp>Enzymeâ€Free</scp> Amperometric Sensor Based on <scp>Selfâ€Assembling Ferroceneâ€Conjugated</scp> Oligopeptide for Specific Determination of <scp><i>L</i>â€Arginine</scp> . Chinese Journal of Chemistry, 2021, 39, 2755-2762.	4.9	10
16	Sensitive fluorescence and visual detection of organophosphorus pesticides with a Ru(bpy) ₃ ²⁺ –ZIF-90–MnO ₂ sensing platform. Analytical Methods, 2021, 13, 2981-2988.	2.7	8
17	Branched <i>versus</i> linear: side-chain effect on fluorinated wide bandgap donors and their applications in organic solar cells. New Journal of Chemistry, 2020, 44, 753-760.	2.8	3
18	Difluorinated Oligothiophenes for Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells: Positional Isomeric Effect of Fluorine Substitution on Performance Variations. Solar Rrl, 2020, 4, 1900472.	5.8	11

#	Article	IF	CITATIONS
19	Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy and Environmental Science, 2020, 13, 5017-5027.	30.8	170
20	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie, 2020, 132, 20007-20012.	2.0	16
21	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19835-19840.	13.8	105
22	Axisymmetric and Asymmetric Naphthalene-Bisthienothiophene Based Nonfullerene Acceptors: On Constitutional Isomerization and Photovoltaic Performance. ACS Applied Energy Materials, 2020, 3, 5734-5744.	5.1	14
23	Novel cost-effective acceptor:P3HT based organic solar cells exhibiting the highest ever reported industrial readiness factor. Materials Advances, 2020, 1, 658-665.	5.4	13
24	Uranyl photocatalysis: precisely controlled oxidation of sulfides with ground-state oxygen. Science China Chemistry, 2020, 63, 291-293.	8.2	13
25	Thermal dynamics affected formation and dislocation of PDLA morphology. Polymer, 2020, 192, 122318.	3.8	6
26	The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells. Journal of Materials Chemistry A, 2020, 8, 5995-6003.	10.3	11
27	Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms. Joule, 2020, 4, 658-672.	24.0	279
28	Crystallisation of iPB-1 based on preserved helix conformation. Polymer, 2020, 190, 122209.	3.8	13
29	Weak Makes It Powerful: The Role of Cognate Small Molecules as an Alloy Donor in 2D/1A Ternary Fullerene Solar Cells for Finely Tuned Hierarchical Morphology in Thick Active Layers. Small Methods, 2020, 4, 1900766.	8.6	19
30	Silicon Heterojunction Solar Cells with MoOxHoleâ€Selective Layer by Hot Wire Oxidation–Sublimation Deposition. Solar Rrl, 2020, 4, 1900514.	5.8	9
31	10.13% Efficiency Allâ€Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors. Solar Rrl, 2020, 4, 2000142.	5.8	45
32	Simple organic donors based on halogenated oligothiophenes for all small molecule solar cells with efficiency over 11%. Journal of Materials Chemistry A, 2020, 8, 5843-5847.	10.3	43
33	An asymmetric end-capping strategy enables a new non-fullerene acceptor for organic solar cells with efficiency over 10%. Chemical Communications, 2020, 56, 6531-6534.	4.1	6
34	Revealing the Position Effect of an Alkylthio Side Chain in Phenyl-Substituted Benzodithiophene-Based Donor Polymers on the Photovoltaic Performance of Non-Fullerene Organic Solar Cells. ACS Applied Materials & Donor Polymers and Science (2019, 11, 33173-33178).	8.0	65
35	DNA-templated copper nanoclusters obtained <i>via</i> TdT isothermal nucleic acid amplification for mercury(<scp>ii</scp>) assay. Analytical Methods, 2019, 11, 4165-4172.	2.7	6
36	Lithography-free and dopant-free back-contact silicon heterojunction solar cells with solution-processed TiO2 as the efficient electron selective layer. Solar Energy Materials and Solar Cells, 2019, 203, 110196.	6.2	18

#	Article	IF	Citations
37	Conformational Energy Settled Crystallization Behaviors of Poly(<scp>l</scp> -lactic acid). ACS Applied Polymer Materials, 2019, 1, 2552-2560.	4.4	4
38	Evaluation of Relationship Between Crystallization Structure and Thermalâ€Mechanical Performance of PLA with MCC Addition. ChemistrySelect, 2019, 4, 10174-10180.	1.5	7
39	Regulation of Molecular Packing and Blend Morphology by Finely Tuning Molecular Conformation for High-Performance Nonfullerene Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44501-44512.	8.0	18
40	Conjugated Donor–Acceptor Terpolymers Toward Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1807019.	21.0	120
41	Effects of terminal substituents on electrochemical reduction of X-PhCH=NPhCH=CHPh-Y. Microchemical Journal, 2019, 146, 729-734.	4.5	2
42	Conjugated Polymers: Conjugated Donor–Acceptor Terpolymers Toward Highâ€Efficiency Polymer Solar Cells (Adv. Mater. 22/2019). Advanced Materials, 2019, 31, 1970161.	21.0	5
43	SnO2/Mg combination electron selective transport layer for Si heterojunction solar cells. Solar Energy Materials and Solar Cells, 2019, 200, 109996.	6.2	27
44	The side chain effects on TPD-based copolymers: the linear chain leads to a higher jsc. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 926-932.	2.2	2
45	Stretchâ€induced stableâ€metastable crystal transformation of PVDF/graphene composites. Polymer Crystallization, 2019, 2, e10079.	0.8	3
46	Green and low-cost synthesis of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries. Materials Letters, 2019, 246, 153-156.	2.6	10
47	An extraordinary cyclohexylmethyl side chain dominating polymeric donor packing patterns and energy levels for efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 10505-10513.	10.3	18
48	Memory effects on crystallization behaviours of poly(<scp> </scp> -lactic acid) revisited. CrystEngComm, 2019, 21, 2660-2668.	2.6	13
49	Effects of sulfonation on bisâ€styrylbiphenyl fluorescent whitening agents for polypropylene. Journal of Applied Polymer Science, 2019, 136, 47635.	2.6	3
50	Multiscale Characterization of a Wood-Based Biocrude as a Green Compatibilizing Agent for High-Impact Polystyrene/Halloysite Nanotube Nanocomposites. ACS Omega, 2019, 4, 19934-19943.	3.5	4
51	Synthesis and Photovoltaic Performance of Anthraceneâ€Based Small Molecules for Solutionâ€Processed Organic Solar Cells. ChemistrySelect, 2019, 4, 752-758.	1.5	5
52	Facile synthesis of bis-dicyanovinylidene-end-capped push-pull molecules as panchromatic absorbers. Dyes and Pigments, 2019, 161, 227-232.	3.7	4
53	Conformation Selected Direct Formation of Form I in Isotactic Poly(butene-1). Crystal Growth and Design, 2018, 18, 2525-2537.	3.0	28
54	Balancing High Open Circuit Voltage over 1.0 V and High Short Circuit Current in Benzodithiopheneâ€Based Polymer Solar Cells with Low Energy Loss: A Synergistic Effect of Fluorination and Alkylthiolation. Advanced Energy Materials, 2018, 8, 1701471.	19.5	57

#	Article	IF	Citations
55	Impact of amorphous micro silica on the C-S-H phase formation in porous calcium silicates. Journal of Non-Crystalline Solids, 2018, 481, 556-561.	3.1	9
56	Reduction of inorganics from macroalgae Laminaria digitata and spent mushroom compost (SMC) by acid leaching and selective hydrothermal liquefaction. Biomass Conversion and Biorefinery, 2018, 8, 369-377.	4.6	7
57	Impact of minor iron content on crystal structure and properties of porous calcium silicates during synthesis. Materials Chemistry and Physics, 2018, 205, 180-185.	4.0	9
58	Solutionâ€processed ZnO as the efficient passivation and electron selective layer of silicon solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 974-980.	8.1	40
59	Effects of Remote Substituents on Electrochemical Reduction of X-PhCH=NPhCH=CHPh-Y. Journal of Self-Assembly and Molecular Electronics (SAME), 2018, 6, 1-1.	0.0	0
60	Mono-dispersed multi-doped LiFePO4/C nanoparticles as a cathode material forlithium-ion batteries. Journal of Self-Assembly and Molecular Electronics (SAME), 2018, 6, 1-1.	0.0	0
61	Covalent Imprinting and Covalent Rebinding of Benzyl Mercaptan: Towards a Facile Detection of Proteins. Analytical Letters, 2017, 50, 866-876.	1.8	5
62	Pyrophosphate as substrate for alkaline phosphatase activity: A convenient flowâ€injection chemiluminescence assay. Luminescence, 2017, 32, 1150-1156.	2.9	19
63	Potential application of an Aspergillus strain in a pilot biofilter for benzene biodegradation. Scientific Reports, 2017, 7, 46059.	3.3	3
64	Nucleic acid-controlled quantum dots aggregation: A label-free fluorescence turn-on strategy for alkaline phosphatase detection. Talanta, 2017, 169, 64-69.	5.5	25
65	Polyphosphoric acid-induced perylene probe self-assembly and label-free fluorescence turn-on detection of alkaline phosphatase. Analytical and Bioanalytical Chemistry, 2017, 409, 1031-1036.	3.7	13
66	Effect of intraplaque angiogenesis to atherosclerotic rupture-prone plaque induced by high shear stress in rabbit model. International Journal of Energy Production and Management, 2017, 4, 215-222.	3.7	12
67	Thermal strain-induced cold crystallization of amorphous poly(lactic acid). CrystEngComm, 2016, 18, 3237-3246.	2.6	25
68	Temperature dependence of poly(lactic acid) mechanical properties. RSC Advances, 2016, 6, 113762-113772.	3.6	49
69	Roll coated large area ITO- and vacuum-free all organic solar cells from diketopyrrolopyrrole based non-fullerene acceptors with molecular geometry effects. RSC Advances, 2016, 6, 41542-41550.	3.6	13
70	Novel high band gap pendant-borylated carbazole polymers with deep HOMO levels through direct +Nî∈Bâ^ interaction for organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 4393-4401.	5.5	6
71	Impact of surface impurity on phase transitions in amorphous micro silica. Journal of Non-Crystalline Solids, 2016, 450, 42-47.	3.1	12
72	Analysis of structure transition and compatibility of PTT/PC blend without transesterification. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1172-1182.	3.8	3

#	Article	IF	Citations
73	Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells. Journal of Materials Chemistry A, 2016, 4, 15688-15697.	10.3	16
74	Deformation-induced crystalline structure evolutions of isotactic poly-1-butene. Colloid and Polymer Science, 2016, 294, 1983-1988.	2.1	6
75	Comparison of the performance of masterbatch and liquid color concentrates for mass coloration of polypropylene. Color Research and Application, 2016, 41, 484-492.	1.6	3
76	Synthesis and biodegradation studies of optically active poly(amide–imide)s based on ⟨i>N⟨ i>,⟨i>N⟨ i>′-(pyromellitoyl)-bis-⟨scp⟩l⟨ scp⟩-amino acid. High Performance Polymers, 2016, 28, 34-46.	1.8	7
77	Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements. Polymer, 2016, 90, 111-121.	3.8	58
78	A qualitative analysis of particle-induced viscosity reduction in polymeric composites. Journal of Materials Science, 2016, 51, 3080-3096.	3.7	8
79	Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b′]dithiophene-based small molecule organic solar cells. Physical Chemistry Chemical Physics, 2015, 17, 17391-17398.	2.8	24
80	Double equilibrium melting temperatures and zero growth temperature of PVDF in PVDF/graphene composites. Journal of Polymer Research, 2015, 22, 1.	2.4	2
81	Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition. International Journal of Hydrogen Energy, 2015, 40, 2833-2839.	7.1	71
82	Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw. Energy, 2015, 80, 284-292.	8.8	160
83	An isoindigo containing donor–acceptor polymer: synthesis and photovoltaic properties of all-solution-processed ITO- and vacuum-free large area roll-coated single junction and tandem solar cells. Journal of Materials Chemistry C, 2015, 3, 1633-1639.	5.5	20
84	Deformation and structure evolution of glassy poly(lactic acid) below the glass transition temperature. CrystEngComm, 2015, 17, 5651-5663.	2.6	37
85	Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS. Polymer, 2015, 70, 109-117.	3.8	22
86	Crystalline structures and crystallization behaviors of poly(l-lactide) in poly(l-lactide)/graphene nanosheet composites. Polymer Chemistry, 2015, 6, 3988-4002.	3.9	37
87	The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors. Synthetic Metals, 2015, 203, 249-254.	3.9	9
88	Simple O ₂ Plasma-Processed V ₂ O ₅ as an Anode Buffer Layer for High-Performance Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7613-7618.	8.0	43
89	Theoretical Study on the Rational Design of Cyano-Substituted P3HT Materials for OSCs: Substitution Effect on the Improvement of Photovoltaic Performance. Journal of Physical Chemistry C, 2015, 119, 8501-8511.	3.1	39
90	Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury. International Journal of Energy Production and Management, 2015, 2, 87-96.	3.7	37

#	Article	IF	Citations
91	Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Applied Energy, 2015, 137, 183-192.	10.1	298
92	An Assay Study of Molecular Recognition of Amino Acids in Water: Covalent Imprinting of Cysteine. Journal of Biomedical Science and Engineering, 2015, 08, 805-814.	0.4	2
93	Preparation and characterization of a temperature-sensitive nonwoven poly (propylene) with antibacterial properties. Journal of the Textile Institute, 2014, 105, 327-336.	1.9	2
94	Experimental Study of Subcritical Water Liquefaction of Biomass: Effects of Catalyst and Biomass Species. , 2014, , .		0
95	Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(<scp>I</scp> -lactide) and ring banded supra-structures with radial periodic variation of thickness. CrystEngComm, 2014, 16, 94-101.	2.6	20
96	New optically active poly(amide-imide)s based on N,N \hat{a} e²-(pyromellitoyl)-bis-L-amino acid and methylene diphenyl-4,4 \hat{a} e²-diisocyanate: synthesis and characterization. Designed Monomers and Polymers, 2014, 17, 201-207.	1.6	6
97	Influence of Teflon substrate on crystallization and enzymatic degradation of polymorphic poly(butylene adipate). Chinese Journal of Polymer Science (English Edition), 2014, 32, 1243-1252.	3.8	6
98	Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene. Journal of Polymer Research, 2014, 21, 1.	2.4	3
99	Wall Slip Effect on Shear-Induced Crystallization Behavior of Isotactic Polypropylene Containing Î ² -Nucleating Agent. Industrial & Discourse Chemistry Research, 2014, 53, 13513-13521.	3.7	21
100	Sappan Lignum Extract Inhibits Restenosis in the Injured Artery through the Deactivation of Nuclear Factor-ÎB. AIMS Bioengineering, 2014, 1, 25-39.	1.1	2
101	Effect of Caspase Inhibitor Ac-DEVD-CHO on Apoptosis of Vascular Smooth Muscle Cells Induced by Artesunate. AIMS Bioengineering, 2014, 1, 13-24.	1.1	0
102	Chloroform micro-evaporation induced ordered structures of poly(l-lactide) thin films. RSC Advances, 2013, 3, 13705.	3.6	10
103	A novel benzodipyrrolidone-based low band gap polymer for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 10116.	10.3	30
104	Influence of Crystallization on Molecular Dynamics of the Amorphous Phase in Poly($\hat{l}\mu$ -caprolactone) and Poly($\hat{l}\mu$ -caprolactone)/LiClO4 Complexes Investigated by Dielectric Relaxation Spectroscopy. Journal of Polymer Research, 2013, 20, 1.	2.4	1
105	Shear effects on crystalline structures of poly(l-lactide). CrystEngComm, 2013, 15, 7914.	2.6	14
106	Crystalline structures of poly(I-lactide) formed under pressure and structure transitions with heating. CrystEngComm, 2013, 15, 4372.	2.6	16
107	Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor–acceptor polymers. Journal of Materials Chemistry A, 2013, 1, 1785-1793.	10.3	32
108	A Nanoparticle Approach towards Morphology Controlled Organic Photovoltaics (OPV). Polymers, 2012, 4, 1242-1258.	4.5	7

#	Article	IF	Citations
109	Immobilization of Polymethyl Methacrylate Brushes on Hydroxyapatite under Molecular Weight Control. Industrial & Engineering Chemistry Research, 2011, 50, 6109-6114.	3.7	13
110	Use of βâ€cyclodextrins to control the structure of waterâ€soluble copolymers with hydrophobic parts. Journal of Polymer Science Part A, 2009, 47, 6619-6629.	2.3	10
111	Aqueous batch rebinding and selectivity studies on sucrose imprinted polymers. Biosensors and Bioelectronics, 2009, 25, 623-628.	10.1	15
112	Thionation of tetrakis[(ethoxycarbonyl)methoxy]tetrathiacalix[4]arenes with Lawesson's reagent. Monatshefte Fýr Chemie, 2008, 139, 1103-1108.	1.8	3
113	Energy transfer from polyfluorene based polymer to europium complex. EPJ Applied Physics, 2007, 37, 57-59.	0.7	3
114	Synthesis, Separation and Characterization of Thiacalix[4] arenes Diastereomers. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 183, 150-155.	1.6	2
115	Regioselective alkanoylation of cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 333-338.	1.6	4
116	Metal and Semiconductor Nanowire Network Thin Films with Hierarchical Pore Structures. Chemistry of Materials, 2006, 18, 4231-4237.	6.7	67
117	Hierarchical silica particles by dynamic multicomponent assembly. Microporous and Mesoporous Materials, 2005, 85, 305-312.	4.4	7
118	Templated Synthesis, Characterization, and Sensing Application of Macroscopic Platinum Nanowire Network Electrodes. Journal of Nanoscience and Nanotechnology, 2005, 5, 1904-1909.	0.9	36
119	Mechanical properties, water swelling behavior, and morphology of swellable rubber compatibilized by PVA-g-PBA. Polymer Engineering and Science, 2004, 44, 72-78.	3.1	19
120	Brittle-ductile transition of polypropylene/ethylene-propylene-diene monomer blends induced by size, temperature, and time. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1433-1440.	2.1	38
121	Brittle-ductile transition of particle toughened polymers: influence of the matrix properties. Polymer, 2004, 45, 6427-6430.	3.8	47
122	Structure and properties of hybrid poly(2-hydroxyethyl methacrylate)/SiO2 monoliths. Journal of Applied Polymer Science, 2003, 88, 3168-3175.	2.6	34
123	EFFECT OF CROSS-LINKING OF HIGH-DENSITY POLYETHYLENE. I. ON SPHERULITIC STRUCTURES. Journal of Macromolecular Science - Physics, 2001, 40, 335-341.	1.0	1
124	Confined crystallization behavior of PEO in silica networks. Polymer, 2000, 41, 2041-2046.	3.8	67
125	Enzymatic degradation of poly($\hat{l}\mu$ -caprolactone)/poly(dl-lactide) blends in phosphate buffer solution. Polymer, 1999, 40, 2859-2862.	3.8	201
126	Controlled Synthesis of L-Lactide-b-ε-Caprolactone Block Copolymers Using a Rare Earth Complex as Catalyst. Polymer Journal, 1999, 31, 633-636.	2.7	22

#	Article	IF	CITATIONS
127	The multiple melting behaviour of immiscible poly(ether ether ketone)/poly(ether diphenyl ether) Tj ETQq1 1 0.78	84314 rgBT	Overlock 1
128	The formation of ring-banded spherulites of poly(\acute{E})-caprolactone) in its miscible mixtures with poly(styrene-co-acrylonitrile). Polymer, 1997, 38, 5897-5901.	3.8	51
129	Effects of molecular weight and interaction parameter on the glass transition temperature of polystyrene mixtures and its blends with polystyrene/poly (2,6-dimethyl-p-phenylene oxide). European Polymer Journal, 1997, 33, 1523-1528.	5.4	44
130	Tensile and transformational behavior of poly(ether sulfone)/polycarbonate blends. Angewandte Makromolekulare Chemie, 1996, 243, 1-10.	0.2	7