
Andrew B West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MOLECULAR PATHOPHYSIOLOGY OF PARKINSON'S DISEASE. Annual Review of Neuroscience, 2005, 28, 57-87.	10.7	1,111
2	Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16842-16847.	7.1	1,084
3	A genome-wide linkage and association scan reveals novel loci for autism. Nature, 2009, 461, 802-808.	27.8	570
4	Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Human Molecular Genetics, 2007, 16, 223-232.	2.9	535
5	Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Annals of Neurology, 2006, 60, 557-569.	5.3	479
6	Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nature Communications, 2014, 5, 5748.	12.8	478
7	Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18676-18681.	7.1	390
8	LRRK2 Inhibition Attenuates Microglial Inflammatory Responses. Journal of Neuroscience, 2012, 32, 1602-1611.	3.6	386
9	Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nature Medicine, 2010, 16, 998-1000.	30.7	342
10	Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biology, 2013, 14, R102.	9.6	291
11	Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nature Reviews Neurology, 2020, 16, 303-318.	10.1	254
12	LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Human Molecular Genetics, 2018, 27, 385-395.	2.9	218
13	Formation of α-synuclein Lewy neurite–like aggregates in axons impedes the transport of distinct endosomes. Molecular Biology of the Cell, 2014, 25, 4010-4023.	2.1	202
14	Complex relationship between Parkin mutations and Parkinson disease. American Journal of Medical Genetics Part A, 2002, 114, 584-591.	2.4	193
15	Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nature Medicine, 2011, 17, 692-699.	30.7	190
16	Abrogation of α-synuclein–mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9289-9294.	7.1	187
17	LRRK2 levels in immune cells are increased in Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 11.	5.3	177
18	Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nature Cell Biology, 2009, 11, 1370-1375.	10.3	173

#	Article	IF	CITATIONS
19	Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration. Journal of Biological Chemistry, 2015, 290, 19433-19444.	3.4	171
20	LRRK2 Antisense Oligonucleotides Ameliorate α-Synuclein Inclusion Formation in a Parkinson's Disease Mouse Model. Molecular Therapy - Nucleic Acids, 2017, 8, 508-519.	5.1	167
21	Dependence of Leucine-rich Repeat Kinase 2 (LRRK2) Kinase Activity on Dimerization. Journal of Biological Chemistry, 2009, 284, 36346-36356.	3.4	164
22	G2019S-LRRK2 Expression Augments Â-Synuclein Sequestration into Inclusions in Neurons. Journal of Neuroscience, 2016, 36, 7415-7427.	3.6	156
23	Ser(P)â€1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease. Movement Disorders, 2016, 31, 1543-1550.	3.9	144
24	LRRK2 secretion in exosomes is regulated by 14-3-3. Human Molecular Genetics, 2013, 22, 4988-5000.	2.9	142
25	Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. Brain Research, 2007, 1155, 208-219.	2.2	139
26	Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neuroscience, 2007, 8, 102.	1.9	135
27	α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic Neurodegeneration. Neurobiology of Disease, 2017, 105, 84-98.	4.4	129
28	α-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Acta Neuropathologica Communications, 2017, 5, 85.	5.2	129
29	Finding useful biomarkers for Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	125
30	Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Experimental Neurology, 2017, 298, 236-245.	4.1	123
31	GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1. PLoS Genetics, 2012, 8, e1002526.	3.5	122
32	Autophosphorylation in the Leucine-Rich Repeat Kinase 2 (LRRK2) GTPase Domain Modifies Kinase and GTP-Binding Activities. Journal of Molecular Biology, 2011, 412, 94-110.	4.2	117
33	Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S <i>LRRK2</i> carriers. Neurology, 2016, 86, 994-999.	1.1	114
34	Identification of a Novel Gene Linked to Parkin via a Bi-directional Promoter. Journal of Molecular Biology, 2003, 326, 11-19.	4.2	111
35	To die or grow: Parkinson's disease and cancer. Trends in Neurosciences, 2005, 28, 348-352.	8.6	110
36	Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. Journal of Comparative Neurology, 2014, 522, 2465-2480.	1.6	110

#	Article	IF	CITATIONS
37	Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson's disease. Movement Disorders, 2010, 25, 2156-2163.	3.9	108
38	Parkin mediates the degradationâ€independent ubiquitination of Hsp70. Journal of Neurochemistry, 2008, 105, 1806-1819.	3.9	101
39	Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine, 2019, 45, 351-361.	6.1	99
40	Genetics of parkin-linked disease. Human Genetics, 2004, 114, 327-336.	3.8	98
41	Functional association of the parkin gene promoter with idiopathic Parkinson's disease. Human Molecular Genetics, 2002, 11, 2787-2792.	2.9	95
42	Zeroing in on LRRK2-linked pathogenic mechanisms in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 625-633.	3.8	91
43	Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1439-1444.	7.1	87
44	Comprehensive characterization and optimization of anti-LRRK2 (leucine-rich repeat kinase 2) monoclonal antibodies. Biochemical Journal, 2013, 453, 101-113.	3.7	84
45	The NINDS Parkinson's disease biomarkers program. Movement Disorders, 2016, 31, 915-923.	3.9	83
46	Genetic and Environmental Factors in <scp>P</scp> arkinson's Disease Converge on Immune Function and Inflammation. Movement Disorders, 2021, 36, 25-36.	3.9	69
47	Elevated LRRK2 autophosphorylation in brain-derived and peripheral exosomes in LRRK2 mutation carriers. Acta Neuropathologica Communications, 2017, 5, 86.	5.2	68
48	Identification and Characterization of a Leucine-Rich Repeat Kinase 2 (LRRK2) Consensus Phosphorylation Motif. PLoS ONE, 2010, 5, e13672.	2.5	66
49	PGC-1α Provides a Transcriptional Framework for Synchronous Neurotransmitter Release from Parvalbumin-Positive Interneurons. Journal of Neuroscience, 2014, 34, 14375-14387.	3.6	64
50	14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening. Human Molecular Genetics, 2016, 25, 109-122.	2.9	64
51	Ten <scp>Y</scp> ears and <scp>C</scp> ounting: <scp>M</scp> oving <scp>L</scp> eucineâ€ <scp>R</scp> ich <scp>Repeat</scp> <scp>K</scp> inase 2 <scp>I</scp> nhibitors to the <scp>C</scp> linic. Movement Disorders, 2015, 30, 180-189.	3.9	60
52	The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins. Human Molecular Genetics, 2015, 24, 4250-4267.	2.9	58
53	LRRK2 and Rab10 coordinate macropinocytosis to mediate immunological responses in phagocytes. EMBO Journal, 2020, 39, e104862.	7.8	58
54	Sensitivity and specificity of phosphoâ€Ser129 αâ€synuclein monoclonal antibodies. Journal of Comparative Neurology, 2018, 526, 1978-1990.	1.6	55

#	Article	IF	CITATIONS
55	Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomarkers in Medicine, 2017, 11, 451-473.	1.4	49
56	LRRK2 autophosphorylation enhances its GTPase activity. FASEB Journal, 2016, 30, 336-347.	0.5	48
57	Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17296-17307.	7.1	47
58	Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. European Journal of Human Genetics, 2001, 9, 659-666.	2.8	46
59	N-myc Regulates Parkin Expression. Journal of Biological Chemistry, 2004, 279, 28896-28902.	3.4	46
60	Clinical,18F-dopa PET, and genetic analysis of an ethnic Chinese kindred with early-onset parkinsonism andparkin gene mutations. Movement Disorders, 2002, 17, 670-675.	3.9	44
61	The G2019S mutation in LRRK2 imparts resiliency to kinase inhibition. Experimental Neurology, 2018, 309, 1-13.	4.1	40
62	Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Human Molecular Genetics, 2015, 24, 4078-4093.	2.9	39
63	Phosphorylation of 4E-BP1 in the Mammalian Brain Is Not Altered by LRRK2 Expression or Pathogenic Mutations. PLoS ONE, 2012, 7, e47784.	2.5	39
64	Association of Dual <i>LRRK2 </i> G2019S and <i>GBA</i> Variations With Parkinson Disease Progression. JAMA Network Open, 2021, 4, e215845.	5.9	38
65	The unlikely partnership between <scp>LRRK</scp> 2 and αâ€synuclein in Parkinson's disease. European Journal of Neuroscience, 2019, 49, 339-363.	2.6	35
66	Pathological \hat{I}_{\pm} -synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Molecular Neurodegeneration, 2022, 17, 7.	10.8	34
67	Defining the Contribution of CNTNAP2 to Autism Susceptibility. PLoS ONE, 2013, 8, e77906.	2.5	33
68	ldentification and characterization of the human parkin gene promoter. Journal of Neurochemistry, 2001, 78, 1146-1152.	3.9	31
69	Exaggerated CpH methylation in the autism-affected brain. Molecular Autism, 2017, 8, 6.	4.9	31
70	LRRK2 in Parkinson's disease: function in cells and neurodegeneration. FEBS Journal, 2009, 276, 6436-6444.	4.7	29
71	Unique Functional and Structural Properties of the LRRK2 Protein ATP-binding Pocket. Journal of Biological Chemistry, 2014, 289, 32937-32951.	3.4	26
72	Sex-based differences in the activation of peripheral blood monocytes in early Parkinson disease. Npj Parkinson's Disease, 2021, 7, 36.	5.3	26

#	Article	IF	CITATIONS
73	RNA-Seq optimization with eQTL gold standards. BMC Genomics, 2013, 14, 892.	2.8	24
74	Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathologica, 2021, 141, 547-564.	7.7	23
75	Identification of <i>LRRK2</i> missense variants in the accelerating medicines partnership Parkinson's disease cohort. Human Molecular Genetics, 2021, 30, 454-466.	2.9	20
76	Parkin is not regulated by the unfolded protein response in human neuroblastoma cells. Neuroscience Letters, 2003, 341, 139-142.	2.1	17
77	Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics. Frontiers in Neuroscience, 2020, 14, 807.	2.8	17
78	Inhibition of LRRK2 kinase activity promotes anterograde axonal transport and presynaptic targeting of α-synuclein. Acta Neuropathologica Communications, 2021, 9, 180.	5.2	16
79	Hyperactivity and cortical disinhibition in mice with restricted expression of mutant huntingtin to parvalbumin-positive cells. Neurobiology of Disease, 2014, 62, 160-171.	4.4	15
80	Identification of bonaâ€fide LRRK2 kinase substrates. Movement Disorders, 2016, 31, 1140-1141.	3.9	15
81	Exosome markers of LRRK2 kinase inhibition. Npj Parkinson's Disease, 2020, 6, 32.	5.3	15
82	Elevated Urinary Rab10 Phosphorylation in Idiopathic Parkinson Disease. Movement Disorders, 2022, 37, 1454-1464.	3.9	13
83	Caught in the act: LRRK2 in exosomes. Biochemical Society Transactions, 2019, 47, 663-670.	3.4	12
84	The Therapeutic Potential of LRRK2 and α-Synuclein in Parkinson's Disease. Antioxidants and Redox Signaling, 2009, 11, 2167-2187.	5.4	9
85	Genetic background influences LRRK2-mediated Rab phosphorylation in the rat brain. Brain Research, 2021, 1759, 147372.	2.2	8
86	Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. Journal of Parkinson's Disease, 2022, 12, 1423-1447.	2.8	8
87	Breathing new life into an old target: pulmonary disease drugs for Parkinson's disease therapy. Genome Medicine, 2017, 9, 88.	8.2	6
88	Revelations and revolutions in the understanding of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 585-586.	3.8	3
89	Differential LRRK2 expression in the cortex, striatum, and substantia nigra in transgenic and nontransgenic rodents. Journal of Comparative Neurology, 2014, 522, Spc1-Spc1.	1.6	2
90	The dual enzyme LRRK2 hydrolyzes GTP in both its GTPase and kinase domains in vitro. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 274-280.	2.3	2

#	Article	IF	CITATIONS
91	Evaluation of ABT-888 in the amelioration of α-synuclein fibril-induced neurodegeneration. Brain Communications, 2022, 4, fcac042.	3.3	1
92	Identification of a Novel Gene Linked to Parkin via a Bidirectional Promoter. Annals of the New York Academy of Sciences, 2003, 991, 311-314.	3.8	0
93	Basal Ganglia Disorders. , 2013, , 1-39.		0