
Kerry B Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3848392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carotenoids, ascorbic acid and total phenolic content in the root tissue from five Australian-grown sweet potato cultivars. New Zealand Journal of Crop and Horticultural Science, 2022, 50, 32-47.	1.3	7
2	Review: The evolution of chemometrics coupled with near infrared spectroscopy for fruit quality evaluation. Journal of Near Infrared Spectroscopy, 2022, 30, 3-17.	1.5	15
3	Postharvest regulation and quality standards on fresh produce. , 2022, , 51-98.		Ο
4	In vitro Cytotoxic Properties of Crude Polar Extracts of Plants Sourced from Australia. Clinical Complementary Medicine and Pharmacology, 2022, 2, 100022.	1.5	6
5	In-Field Estimation of Fruit Quality and Quantity. Agronomy, 2022, 12, 1074.	3.0	2
6	Characterisation of Selected Mungbean Genotypes for Tolerance to Waterlogging Stress at Pod Filling Stage. Agronomy, 2022, 12, 1663.	3.0	4
7	Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content. II. Local PLS and nonlinear models. Postharvest Biology and Technology, 2021, 171, 111358.	6.0	42
8	Antioxidative and therapeutic potential of selected Australian plants: A review. Journal of Ethnopharmacology, 2021, 268, 113580.	4.1	37
9	Attempting to Estimate the Unseen—Correction for Occluded Fruit in Tree Fruit Load Estimation by Machine Vision with Deep Learning. Agronomy, 2021, 11, 347.	3.0	24
10	Mango maturity classification instead of maturity index estimation: A new approach towards handheld NIR spectroscopy. Infrared Physics and Technology, 2021, 115, 103639.	2.9	13
11	Technologies for Forecasting Tree Fruit Load and Harvest Timing—From Ground, Sky and Time. Agronomy, 2021, 11, 1409.	3.0	44
12	Phenolic Profiles of Ten Australian Faba Bean Varieties. Molecules, 2021, 26, 4642.	3.8	14
13	Partitioning of nutritional and bioactive compounds between the kernel, hull and husk of five new chickpea genotypes grown in Australia. Future Foods, 2021, 4, 100065.	5.4	12
14	Estimation of Fruit Load in Australian Mango Orchards Using Machine Vision. Agronomy, 2021, 11, 1711.	3.0	18
15	Evaluation of Depth Cameras for Use in Fruit Localization and Sizing: Finding a Successor to Kinect v2. Agronomy, 2021, 11, 1780.	3.0	37
16	Near infrared spectroscopy in the characterisation of intact human teeth inside and outside custody bags. Journal of Near Infrared Spectroscopy, 2021, 29, 102-107.	1.5	1
17	Phenolic profiles and nutritional quality of four new mungbean lines grown in northern Australia. , 2021, 3, e70.		15
18	Exploring the Potential of High Resolution Satellite Imagery for Yield Prediction of Avocado and Mango Crops. Proceedings (mdpi), 2020, 36, .	0.2	1

#	Article	IF	CITATIONS
19	Improvement of tablegrape vine fruitfulness by prior season gibberellic acid application during flowering. Journal of Horticultural Science and Biotechnology, 2020, 95, 76-83.	1.9	Ο
20	Assessment of avocado fruit dry matter content using portable near infrared spectroscopy: Method and instrumentation optimisation. Postharvest Biology and Technology, 2020, 161, 111078.	6.0	41
21	Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content. Postharvest Biology and Technology, 2020, 168, 111202.	6.0	58
22	Visible-NIR â€~point' spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biology and Technology, 2020, 168, 111246.	6.0	225
23	Solvent extractions and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums. Chemical Papers, 2020, 74, 4481-4492.	2.2	33
24	Application of infrared spectroscopy for the prediction of nutritional content and quality assessment of faba bean (<scp><i>Vicia faba</i></scp> L.). , 2020, 2, e40.		7
25	Achieving robustness to temperature change of a NIRS-PLSR model for intact mango fruit dry matter content. Postharvest Biology and Technology, 2020, 162, 111117.	6.0	28
26	The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biology and Technology, 2020, 163, 111139.	6.0	114
27	NIRS prediction of dry matter content of single olive fruit with consideration of variable sorting for normalisation pre-treatment. Postharvest Biology and Technology, 2020, 163, 111140.	6.0	47
28	Deep Learning for Mango (Mangifera indica) Panicle Stage Classification. Agronomy, 2020, 10, 143.	3.0	24
29	Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research, 2020, 284, 197989.	2.2	337
30	Water denial to influence mango carbohydrate content. Acta Horticulturae, 2019, , 69-74.	0.2	0
31	Fruit sizing in-field using a mobile app. Acta Horticulturae, 2019, , 129-136.	0.2	2
32	Mango Fruit Load Estimation Using a Video Based MangoYOLO—Kalman Filter—Hungarian Algorithm Method. Sensors, 2019, 19, 2742.	3.8	58
33	Do Steviol Glycosides Provide Ecological Fitness to <i>Stevia rebaudiana</i> through Impact on Dietary Preference of Plant Pests and Herbivores?. Journal of Natural Products, 2019, 82, 1200-1206.	3.0	2
34	Feed supplementation with biochar may reduce poultry pathogens, including Campylobacter hepaticus, the causative agent of Spotty Liver Disease. PLoS ONE, 2019, 14, e0214471.	2.5	22
35	Deep learning – Method overview and review of use for fruit detection and yield estimation. Computers and Electronics in Agriculture, 2019, 162, 219-234.	7.7	310
36	Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of â€~MangoYOLO'. Precision Agriculture, 2019, 20, 1107-1135.	6.0	262

#	Article	IF	CITATIONS
37	Using hand-held infrared spectroscopy to guide harvest decisions. Acta Horticulturae, 2019, , 123-128.	0.2	1
38	Temporal yield variability in subtropical table grape production. Scientia Horticulturae, 2019, 246, 951-956.	3.6	11
39	Using machine vision in mango orchard management. Acta Horticulturae, 2019, , 109-116.	0.2	1
40	Technical note: support tools for maturity estimation. Acta Horticulturae, 2019, , 117-122.	0.2	2
41	Effect of stabilised hydrogen peroxide on seed germination and seedling growth and its implication for managing drip irrigation. Acta Horticulturae, 2019, , 125-132.	0.2	0
42	Manure from biochar, bentonite and zeolite feed supplemented poultry: Moisture retention and granulation properties. Journal of Environmental Management, 2018, 216, 82-88.	7.8	29
43	In Field Fruit Sizing Using A Smart Phone Application. Sensors, 2018, 18, 3331.	3.8	20
44	Do Steviol Glycosides Act Either as a Carbon Storage Pool or in Osmoregulation within Leaves ofStevia rebaudiana?. Journal of Natural Products, 2018, 81, 2357-2363.	3.0	5
45	Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform. Computers and Electronics in Agriculture, 2018, 155, 298-313.	7.7	63
46	Machine vision assessment of mango orchard flowering. Computers and Electronics in Agriculture, 2018, 151, 501-511.	7.7	43
47	Variations in seed and post-harvest residue yields and residues quality of common bean (Phaseolus) Tj ETQq1 1 ().784314 2.2	rgBT /Overlo
48	Machine vision for counting fruit on mango tree canopies. Precision Agriculture, 2017, 18, 224-244.	6.0	103
49	Zeolite food supplementation reduces abundance of enterobacteria. Microbiological Research, 2017, 195, 24-30.	5.3	29
50	Light-emitting diodes as light sources for spectroscopy: Sensitivity to temperature. Journal of Near Infrared Spectroscopy, 2017, 25, 416-422.	1.5	8
51	Manipulation of mango fruit dry matter content to improve eating quality. Scientia Horticulturae, 2017, 226, 316-321.	3.6	35
52	Advances in techniques for assessment of microalgal lipids. Critical Reviews in Biotechnology, 2017, 37, 566-578.	9.0	15
53	On-Tree Mango Fruit Size Estimation Using RGB-D Images. Sensors, 2017, 17, 2738.	3.8	114
54	Internal defect detection in fruit by using NIR spectroscopy. Acta Horticulturae, 2016, , 337-342.	0.2	4

#	Article	IF	CITATIONS
55	Fruit internal defect sorting: rejection makes the rest the best. Acta Horticulturae, 2016, , 213-218.	0.2	ο
56	Effects of biochar addition on plant available water of a loamy sandy soil and consequences on cowpea growth. Acta Horticulturae, 2016, , 357-364.	0.2	6
57	In-field monitoring of mango fruit dry matter for maturity estimation. Acta Horticulturae, 2016, , 273-278.	0.2	8
58	Automating mango crop yield estimation. Acta Horticulturae, 2016, , 581-588.	0.2	2
59	Automated mango flowering assessment via refinement segmentation. , 2016, , .		6
60	Detection of attribute XXX in fruit YYY using NIRS. Acta Horticulturae, 2016, , 141-146.	0.2	0
61	The evolution of spectrophotometers used in fruit quality assessment. Acta Horticulturae, 2016, , 203-208.	0.2	3
62	Improving Calibration Transfer between Shortwave near Infrared Silicon Photodiode Array Instruments. Journal of Near Infrared Spectroscopy, 2016, 24, 59-68.	1.5	14
63	Spectrophotometer Ageing and Prediction of Fruit Attributes. Journal of Near Infrared Spectroscopy, 2016, 24, 337-344.	1.5	3
64	The impact of lamp environment on prediction of peach TSS content. Acta Horticulturae, 2016, , 155-162.	0.2	1
65	Quality Estimation of <i>Agave Tequilana</i> Leaf for Bioethanol Production. Journal of Near Infrared Spectroscopy, 2016, 24, 453-465.	1.5	6
66	Estimation of fruit maturation and ripening using spectral indices. Acta Horticulturae, 2016, , 265-272.	0.2	4
67	Assessment of internal flesh browning in intact apple using visible-short wave near infrared spectroscopy. Postharvest Biology and Technology, 2016, 120, 103-111.	6.0	45
68	Novel pre-treatment of zeolite materials for the removal of sodium ions: potential materials for coal seam gas co-produced wastewater. SpringerPlus, 2016, 5, 571.	1.2	28
69	Microalgal fatty acid composition: rapid assessment using near-infrared spectroscopy. Journal of Applied Phycology, 2016, 28, 85-94.	2.8	7
70	Quality evaluation of intact açaÃ-and juçara fruit by means of near infrared spectroscopy. Postharvest Biology and Technology, 2016, 112, 64-74.	6.0	16
71	Biochar, Bentonite and Zeolite Supplemented Feeding of Layer Chickens Alters Intestinal Microbiota and Reduces Campylobacter Load. PLoS ONE, 2016, 11, e0154061.	2.5	64
72	Spectrophotometer aging and prediction of total soluble solids. Acta Horticulturae, 2016, , 209-212.	0.2	0

#	Article	IF	CITATIONS
73	Nondestructive Assessment of Fruit Quality. Contemporary Food Engineering, 2015, , 39-64.	0.2	1
74	CAN VISUAL REFLECTANCE INDICES BE RELATED TO RIPENESS OF BANANA FRUIT?. Acta Horticulturae, 2015, , 67-72.	0.2	1
75	A CASE STUDY OF A DECISION SUPPORT SYSTEM ON MANGO FRUIT MATURITY. Acta Horticulturae, 2015, , 195-204.	0.2	2
76	Characterisation of the soil microbial community of cultivated and uncultivated vertisol in Australia under several management regimes. Agriculture, Ecosystems and Environment, 2015, 199, 418-427.	5.3	16
77	Classification of intact açaÃ-(Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart) fruits based on dry matter content by means of near infrared spectroscopy. Food Control, 2015, 50, 630-636.	5.5	20
78	HARVESTING QUALITY, WHERE TO START?. Acta Horticulturae, 2015, , 269-276.	0.2	3
79	An ecological study of the central Queensland ultramafic endemic shrub Neoroepera buxifolia (Picrodendraceae), Australia. Australian Journal of Botany, 2015, 63, 269.	0.6	1
80	Improving the Uniformity of Emitter Air Bubble Delivery during Oxygation. Journal of Irrigation and Drainage Engineering - ASCE, 2014, 140, .	1.0	2
81	Estimating mango crop yield using image analysis using fruit at †stone hardening' stage and night time imaging. Computers and Electronics in Agriculture, 2014, 100, 160-167.	7.7	98
82	Biomass and Total Lipid Content Assessment of Microalgal Cultures Using Near and Short Wave Infrared Spectroscopy. Bioenergy Research, 2014, 7, 306-318.	3.9	14
83	The potential for modification in cloning and vitrification technology to enhance genetic progress in beef cattle in Northern Australia. Animal Reproduction Science, 2014, 148, 91-96.	1.5	28
84	Postharvest Regulation and Quality Standards on Fresh Produce. , 2014, , 167-215.		3
85	Temporal and Environmental Sensitivity of a Photodiode Array Spectrophometric System. Journal of Near Infrared Spectroscopy, 2014, 22, 297-304.	1.5	9
86	Robustness of Partial Least-Squares Models to Change in Sample Temperature: II. Application to Fruit Attributes. Journal of Near Infrared Spectroscopy, 2014, 22, 287-295.	1.5	15
87	Robustness of Partial Least-Squares Models to Change in Sample Temperature: I. A Comparison of Methods for Sucrose in Aqueous Solution. Journal of Near Infrared Spectroscopy, 2014, 22, 279-286.	1.5	19
88	Estimation of mango crop yield using image analysis – Segmentation method. Computers and Electronics in Agriculture, 2013, 91, 57-64.	7.7	155
89	Analysis of factors affecting the availability of air bubbles to subsurface drip irrigation emitters during oxygation. Irrigation Science, 2013, 31, 621-630.	2.8	8
90	Prediction of Brix Values of Intact Peaches with Least Squares-Support Vector Machine Regression Models. Journal of Near Infrared Spectroscopy, 2012, 20, 647-655.	1.5	11

#	Article	IF	CITATIONS
91	Assessment of Titratable Acidity in Fruit Using Short Wave near Infrared Spectroscopy. Part B: Intact Fruit Studies. Journal of Near Infrared Spectroscopy, 2012, 20, 459-463.	1.5	15
92	Biodegradation of Sugarcane Trash Through Use of Microbially Enhanced Compost Extracts. Compost Science and Utilization, 2012, 20, 34-42.	1.2	1
93	Assessment of Titratable Acidity in Fruit Using Short Wave near Infrared Spectroscopy. Part A: Establishing a Detection Limit Based on Model Solutions. Journal of Near Infrared Spectroscopy, 2012, 20, 449-457.	1.5	6
94	Evaluation of a Dry Extract System Involving NIR Spectroscopy (DESIR) for Rapid Assessment of Pesticide Contamination of Fruit Surfaces. American Journal of Analytical Chemistry, 2012, 03, 524-533.	0.9	12
95	Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy. Postharvest Biology and Technology, 2011, 62, 238-245.	6.0	86
96	Comparison of microbially enhanced compost extracts produced from composted cattle rumen content material and from commercially available inocula. Bioresource Technology, 2011, 102, 7994-8002.	9.6	10
97	Microbial enhancement of compost extracts based on cattle rumen content compost – Characterisation of a system. Bioresource Technology, 2011, 102, 8027-8034.	9.6	22
98	Changes in microbial and nutrient composition associated with rumen content compost incubation. Bioresource Technology, 2011, 102, 3848-3854.	9.6	16
99	Postharvest Regulation and Quality Standards on Fresh Produce. , 2009, , 205-246.		0
100	Non-invasive techniques for measurement of fresh fruit firmness. Postharvest Biology and Technology, 2009, 51, 297-304.	6.0	51
101	Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2176-2180.	1.4	30
102	Use of near infra-red spectroscopy in evaluation of source-sink manipulation to increase the soluble sugar content of stonefruit. Journal of Horticultural Science and Biotechnology, 2007, 82, 316-322.	1.9	17
103	Prediction of mango eating quality at harvest using short-wave near infrared spectrometry. Postharvest Biology and Technology, 2007, 43, 326-334.	6.0	136
104	Can a N2-fixing Gluconacetobacter diazotrophicus association with sugarcane be achieved?. Australian Journal of Agricultural Research, 2006, 57, 235.	1.5	8
105	SETTING AND MEETING OBJECTIVE STANDARDS FOR EATING QUALITY IN FRESH FRUIT. Acta Horticulturae, 2006, , 191-201.	0.2	5
106	Limitations to the measurement of intact melon total soluble solids using near infrared spectroscopy. Australian Journal of Agricultural Research, 2006, 57, 403.	1.5	42
107	Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta, 2006, 555, 286-291.	5.4	134
108	Control of phytoplasma diseases of papaya in Australia using netting. Australasian Plant Pathology, 2006, 35, 49.	1.0	14

#	Article	IF	CITATIONS
109	Irrigation Scheduling to Increase Muskmelon Fruit Biomass and Soluble Solids Concentration. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 367-369.	1.0	21
110	The anatomy of the pathway of sucrose unloading within the sugarcane stalk. Functional Plant Biology, 2005, 32, 367.	2.1	47
111	Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development. Australian Journal of Agricultural Research, 2005, 56, 405.	1.5	70
112	Sugar "lmaging―of Fruit Using a Low Cost Charge-Coupled Device Camera. Journal of Near Infrared Spectroscopy, 2005, 13, 177-186.	1.5	20
113	A role for nickel in osmotic adjustment in drought-stressed plants of the nickel hyperaccumulator Stackhousia tryonii Bailey. Planta, 2005, 223, 134-139.	3.2	46
114	Successful Seed Germination of the Nickel Hyperaccumulator Stackhousia tryonii. Annals of Botany, 2005, 96, 159-163.	2.9	12
115	Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. Journal of Experimental Botany, 2005, 56, 1343-1349.	4.8	115
116	Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii Bailey using nuclear microprobe (micro-PIXE) and EDXS techniques. Functional Plant Biology, 2004, 31, 1061.	2.1	67
117	Source - sink manipulation to increase melon (Cucumis melo L.) fruit biomass and soluble sugar content. Australian Journal of Agricultural Research, 2004, 55, 1241.	1.5	29
118	Sorting of Fruit Using near Infrared Spectroscopy: Application to a Range of Fruit and Vegetables for Soluble Solids and Dry Matter Content. Journal of Near Infrared Spectroscopy, 2004, 12, 141-148.	1.5	132
119	Assessment of quality defects in macadamia kernels using NIR spectroscopy. Australian Journal of Agricultural Research, 2004, 55, 471.	1.5	20
120	Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytologist, 2003, 160, 479-488.	7.3	45
121	Short-Wavelength Near-Infrared Spectra of Sucrose, Glucose, and Fructose with Respect to Sugar Concentration and Temperature. Applied Spectroscopy, 2003, 57, 139-145.	2.2	219
122	Analysis of genetic diversity in Cassia brewsteri with randomly amplified DNA fingerprints (RAFs). Australian Systematic Botany, 2002, 15, 237.	0.9	3
123	Calibration Transfer between Miniature Photodiode Array-Based Spectrometers in the near Infrared Assessment of Mandarin Soluble Solids Content. Journal of Near Infrared Spectroscopy, 2002, 10, 27-35.	1.5	36
124	Calibration Transfer between PDA-Based NIR Spectrometers in the NIR Assessment of Melon Soluble Solids Content. Applied Spectroscopy, 2001, 55, 647-653.	2.2	79
125	The phytopathology of Australian papaya dieback: a proposed role for the phytoplasma. Physiological and Molecular Plant Pathology, 2001, 58, 23-30.	2.5	28
126	A remote acceptance probe and illumination configuration for spectral assessment of internal attributes of intact fruit. Measurement Science and Technology, 2000, 11, 1674-1684.	2.6	62

#	Article	IF	CITATIONS
127	Application of commercially available, low-cost, miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit. Functional Plant Biology, 2000, 27, 1175.	2.1	29
128	Robustness of NIR Calibrations for Soluble Solids in Intact Melon and Pineapple. Journal of Near Infrared Spectroscopy, 1998, 6, 259-265.	1.5	61
129	Photoassimilate partitioning in nodulated soybean I. 11C methodology. Journal of Experimental Botany, 1998, 49, 1805-1815.	4.8	6
130	Non-invasive assessment of pineapple and mango fruit quality using near infra-red spectroscopy. Australian Journal of Experimental Agriculture, 1997, 37, 253.	1.0	108
131	Proton density and apoplastic domains within soybean nodules in relation to the oxygen diffusion barrier. Plant, Cell and Environment, 1997, 20, 1019-1029.	5.7	5
132	DNA sequence analysis supports the association of phytoplasmas with papaya (Carica papaya) dieback, yellow crinkle and mosaic. Australasian Plant Pathology, 1997, 26, 28.	1.0	22
133	A micropropagation protocol for Melaleuca alternifolia (tea tree). Australian Journal of Experimental Agriculture, 1996, 36, 755.	1.0	5
134	Australian papaya dieback: evidence against the calcium deficiency hypothesis and observations on the significance of laticifer autofluorescence. Australian Journal of Agricultural Research, 1996, 47, 371.	1.5	14
135	Detection of phytoplasmas in dieback, yellow crinkle, and mosaic diseases of papaya using polymerase chain reaction techniques. Australian Journal of Agricultural Research, 1996, 47, 387.	1.5	25
136	Anatomy of the Legume Nodule Cortex: Species Survey of Suberisation and Intercellular Glycoprotein. Functional Plant Biology, 1996, 23, 211.	2.1	15
137	Functional Anatomy of the Oil Glands of Melaleuca alternifolia (Myrtaceae). Australian Journal of Botany, 1995, 43, 629.	0.6	42
138	Symplastic transport in soybean root nodules. Soil Biology and Biochemistry, 1995, 27, 387-399.	8.8	42
139	Physiology of the legume nodule and its response to stress. Soil Biology and Biochemistry, 1995, 27, 637-655.	8.8	97
140	Revegetation of a scalded saline discharge zone in Central Queensland. 2. Water use by vegetation and watertable drawdown. Australian Journal of Experimental Agriculture, 1995, 35, 1131.	1.0	4
141	Revegetation of a scalded saline discharge zone in central Queensland. 1. Selection of tree species and evaluation of an establishment technique. Australian Journal of Experimental Agriculture, 1994, 34, 765.	1.0	12
142	Anatomy of the Legume Nodule Cortex With Respect to Nodule Permeability. Functional Plant Biology, 1994, 21, 49.	2.1	43
143	Can a limitation in pholem supply to nodules account for the inhibitory effect of nitrate on nitrogenase activity in soybean?. Physiologia Plantarum, 1988, 74, 137-146.	5.2	70
144	Oxygen limitation of N ₂ fixation in stemâ€girdled and nitrateâ€treated soybean. Physiologia Plantarum, 1988, 73, 113-121.	5.2	121

#	Article	IF	CITATIONS
145	Regulation of O ₂ Concentration in Soybean Nodules Observed by <i>in Situ</i> Spectroscopic Measurement of Leghemoglobin Oxygenation. Plant Physiology, 1988, 87, 296-299.	4.8	77
146	Carbohydrate Supply and N2 Fixation in Soybean. Plant Physiology, 1987, 85, 137-144.	4.8	121
147	Carbon and Nitrogen Assimilation and Partitioning in Soybeans Exposed to Low Root Temperatures. Plant Physiology, 1986, 80, 249-255.	4.8	71
148	Biochar Improves Plant Growth and Reduces Nutrient Leaching in Red Clay Loam and Sandy Loam. Hydro Nepal: Journal of Water, Energy & Environment, 0, , 86-90.	0.1	7
149	A Simple Isocratic HPLC–UV Method for the Simultaneous Determination of Citrulline and Arginine in Australian Cucurbits and Other Fruits. Food Analytical Methods, 0, , 1.	2.6	4
150	Biochar, zeolite and bentonite feed supplements influence broiler growth and meat yield and excreta properties. , 0, , .		0
151	Poor inflorescence development of â€~Menindee Seedless' grapevines in the subtropics leads to low fertility. Journal of Horticultural Science and Biotechnology, 0, , 1-10.	1.9	Ο