LluÃ-s Ballell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846124/publications.pdf

Version: 2024-02-01

126907 168389 3,168 73 33 53 h-index citations g-index papers 78 78 78 3931 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The repurposing of Tebipenem pivoxil as alternative therapy for severe gastrointestinal infections caused by extensively drug-resistant Shigella spp. ELife, 2022, 11, .	6.0	6
2	The small-molecule SMARt751 reverses <i>Mycobacterium tuberculosis</i> resistance to ethionamide in acute and chronic mouse models of tuberculosis. Science Translational Medicine, 2022, 14, eaaz6280.	12.4	10
3	Repurposing Infectious Disease Hits as Anti- <i>Cryptosporidium</i> Leads. ACS Infectious Diseases, 2021, 7, 1275-1282.	3.8	8
4	Fighting Shigella by Blocking Its Disease-Causing Toxin. Journal of Medicinal Chemistry, 2021, 64, 6059-6069.	6.4	7
5	Tebipenem as an oral alternative for the treatment of typhoid caused by XDR <i>Salmonella</i> Typhi. Journal of Antimicrobial Chemotherapy, 2021, 76, 3197-3200.	3.0	7
6	Tres Cantos Open Lab: celebrating a decade of innovation in collaboration to combat endemic infectious diseases. Nature Reviews Drug Discovery, 2021, 20, 799-800.	46.4	2
7	Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β- <scp>d</scp> -Ribose Oxidase (DprE1) Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 5367-5386.	6.4	18
8	MymA Bioactivated Thioalkylbenzoxazole Prodrug Family Active against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2020, 63, 4732-4748.	6.4	12
9	Novel Pyrazole-Containing Compounds Active against <i>Mycobacterium tuberculosis</i> Medicinal Chemistry Letters, 2019, 10, 1423-1429.	2.8	37
10	An open toolkit for tracking open science partnership implementation and impact. Gates Open Research, 2019, 3, 1442.	1.1	10
11	Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Scientific Reports, 2018, 8, 3939.	3.3	30
12	Accelerating Early Antituberculosis Drug Discovery by Creating Mycobacterial Indicator Strains That Predict Mode of Action. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	15
13	The antibiotic cyclomarin blocks arginine-phosphate–induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2018, 293, 8379-8393.	3.4	36
14	A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Scientific Reports, 2018, 8, 3187.	3.3	41
15	InÂvivo potent BM635 analogue with improved drug-like properties. European Journal of Medicinal Chemistry, 2018, 145, 539-550.	5.5	22
16	Synthesis, antimycobacterial activity and influence on mycobacterial InhA and PknB of 12-membered cyclodepsipeptides. Bioorganic and Medicinal Chemistry, 2018, 26, 3166-3190.	3.0	2
17	ldentification and Profiling of Hydantoins—A Novel Class of Potent Antimycobacterial DprE1 Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 11221-11249.	6.4	30
18	Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1. Scientific Reports, 2018, 8, 13473.	3.3	39

#	Article	IF	Citations
19	Identification and characterization of aspartyl-tRNA synthetase inhibitors against Mycobacterium tuberculosis by an integrated whole-cell target-based approach. Scientific Reports, 2018, 8, 12664.	3.3	20
20	A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors. ACS Infectious Diseases, 2017, 3, 428-437.	3.8	34
21	Pharmaceutical salt of BM635 with improved bioavailability. European Journal of Pharmaceutical Sciences, 2017, 99, 17-23.	4.0	10
22	Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Scientific Reports, 2017, 7, 9430.	3.3	48
23	Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nature Communications, 2017, 8, 16081.	12.8	57
24	Novel Antitubercular 6-Dialkylaminopyrimidine Carboxamides from Phenotypic Whole-Cell High Throughput Screening of a SoftFocus Library: Structure–Activity Relationship and Target Identification Studies. Journal of Medicinal Chemistry, 2017, 60, 10118-10134.	6.4	22
25	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
26	Target Identification of Mycobacterium tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach. Frontiers in Pharmacology, 2017, 8, 681.	3.5	22
27	Design, synthesis and structure-activity relationship study of wollamide B; a new potential anti TB agent. PLoS ONE, 2017, 12, e0176088.	2.5	30
28	A new piperidinol derivative targeting mycolic acid transport in <i>Mycobacterium abscessus</i> Molecular Microbiology, 2016, 101, 515-529.	2.5	100
29	Novel inhibitors of Mycobacterium tuberculosis GuaB2 identified by a target based high-throughput phenotypic screen. Scientific Reports, 2016, 6, 38986.	3.3	22
30	<i>N</i> â∈Benzylâ∈4â∈((heteroaryl)methyl)benzamides: A New Class of Direct NADHâ∈Dependent 2â∈ <i>trans<enoylâ∈"acyl (inha)="" 11,="" 2016,="" 687-701.<="" activity.="" antitubercular="" carrier="" chemmedchem,="" inhibitors="" protein="" reductase="" td="" with=""><td>/i> 3.2</td><td>28</td></enoylâ∈"acyl></i>	/i> 3.2	28
31	Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine, 2016, 8, 291-301.	6.1	60
32	β-Lactams against Tuberculosis â€" New Trick for an Old Dog?. New England Journal of Medicine, 2016, 375, 393-394.	27.0	111
33	THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria. Nature Microbiology, 2016, 1, 15006.	13.3	57
34	Repurposing clinically approved cephalosporins for tuberculosis therapy. Scientific Reports, 2016, 6, 34293.	3.3	66
35	Identification of KasA as the cellular target of an anti-tubercular scaffold. Nature Communications, 2016, 7, 12581.	12.8	72
36	Searching for New Leads for Tuberculosis: Design, Synthesis, and Biological Evaluation of Novel 2-Quinolin-4-yloxyacetamides. Journal of Medicinal Chemistry, 2016, 59, 6709-6728.	6.4	41

#	Article	IF	CITATIONS
37	Open Lab as a source of hits and leads against tuberculosis, malaria and kinetoplastid diseases. Nature Reviews Drug Discovery, 2016, 15, 292-292.	46.4	10
38	New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. European Journal of Medicinal Chemistry, 2016, 112, 252-257.	5.5	20
39	Mycobacterial Dihydrofolate Reductase Inhibitors Identified Using Chemogenomic Methods and In Vitro Validation. PLoS ONE, 2015, 10, e0121492.	2.5	40
40	Release of 50 new, drug-like compounds and their computational target predictions for open source anti-tubercular drug discovery. PLoS ONE, 2015, 10, e0142293.	2.5	38
41	A Developability-Focused Optimization Approach Allows Identification of in Vivo Fast-Acting Antimalarials: N-[3-[(Benzimidazol-2-yl)amino]propyl]amides. Journal of Medicinal Chemistry, 2015, 58, 4573-4580.	6.4	12
42	Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen. Antimicrobial Agents and Chemotherapy, 2015, 59, 753-762.	3.2	52
43	Mycobacterium tuberculosis Gyrase Inhibitors as a New Class of Antitubercular Drugs. Antimicrobial Agents and Chemotherapy, 2015, 59, 1868-1875.	3.2	52
44	Rapid Cytolysis of Mycobacterium tuberculosis by Faropenem, an Orally Bioavailable \hat{l}^2 -Lactam Antibiotic. Antimicrobial Agents and Chemotherapy, 2015, 59, 1308-1319.	3.2	92
45	Hydrolysis of Clavulanate by Mycobacterium tuberculosis β-Lactamase BlaC Harboring a Canonical SDN Motif. Antimicrobial Agents and Chemotherapy, 2015, 59, 5714-5720.	3.2	28
46	Non-absorbable mesoporous silica for the development of protein sequestration therapies. Biochemical and Biophysical Research Communications, 2015, 468, 428-434.	2.1	7
47	Combinations of Î ² -Lactam Antibiotics Currently in Clinical Trials Are Efficacious in a DHP-I-Deficient Mouse Model of Tuberculosis Infection. Antimicrobial Agents and Chemotherapy, 2015, 59, 4997-4999.	3.2	37
48	A Focused Screen Identifies Antifolates with Activity on <i>Mycobacterium tuberculosis</i> Infectious Diseases, 2015, 1, 604-614.	3.8	21
49	Carbamoyl Triazoles, Known Serine Protease Inhibitors, Are a Potent New Class of Antimalarials. Journal of Medicinal Chemistry, 2015, 58, 6448-6455.	6.4	17
50	Whole Cell Target Engagement Identifies Novel Inhibitors of <i>Mycobacterium tuberculosis</i> Decaprenylphosphoryl-β- <scp>d</scp> -ribose Oxidase. ACS Infectious Diseases, 2015, 1, 615-626.	3.8	51
51	Design, Synthesis, and Evaluation of New Thiadiazole-Based Direct Inhibitors of Enoyl Acyl Carrier Protein Reductase (InhA) for the Treatment of Tuberculosis. Journal of Medicinal Chemistry, 2015, 58, 613-624.	6.4	58
52	High-Content Screening Technology Combined with a Human Granuloma Model as a New Approach To Evaluate the Activities of Drugs against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 693-697.	3.2	33
53	Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities. Nanomaterials, 2014, 4, 813-826.	4.1	21
54	Large pore mesoporous silica induced weight loss in obese mice. Nanomedicine, 2014, 9, 1353-1362.	3.3	27

#	Article	IF	Citations
55	Encoded Library Technology as a Source of Hits for the Discovery and Lead Optimization of a Potent and Selective Class of Bactericidal Direct Inhibitors of <i>Mycobacterium tuberculosis</i> Journal of Medicinal Chemistry, 2014, 57, 1276-1288.	6.4	105
56	Biochemical and Structural Characterization of Mycobacterial Aspartyl-tRNA Synthetase AspS, a Promising TB Drug Target. PLoS ONE, 2014, 9, e113568.	2.5	31
57	Fueling Openâ€Source Drug Discovery: 177 Smallâ€Molecule Leads against Tuberculosis. ChemMedChem, 2013, 8, 313-321.	3.2	277
58	<i>In vivo</i> oral toxicological evaluation of mesoporous silica particles. Nanomedicine, 2013, 8, 57-64.	3.3	24
59	Discovery of novel InhA reductase inhibitors: application of pharmacophore- and shape-based screening approach. Future Medicinal Chemistry, 2013, 5, 249-259.	2.3	11
60	Improved BM212 MmpL3 Inhibitor Analogue Shows Efficacy in Acute Murine Model of Tuberculosis Infection. PLoS ONE, 2013, 8, e56980.	2.5	90
61	Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] Analogues with Bactericidal Efficacy against Mycobacterium tuberculosis Targeting MmpL3. PLoS ONE, 2013, 8, e60933.	2.5	123
62	Identification of Novel Imidazo[1,2-a]pyridine Inhibitors Targeting M. tuberculosis QcrB. PLoS ONE, 2012, 7, e52951.	2.5	162
63	In vivo Enhancement in Bioavailability of Atazanavir in the Presence of Protonâ€Pump Inhibitors using Mesoporous Materials. ChemMedChem, 2012, 7, 43-48.	3.2	38
64	4â€Substituted Thioquinolines and Thiazoloquinolines: Potent, Selective, and Tweenâ€80 inâ€vitro Dependent Families of Antitubercular Agents with Moderate inâ€vivo Activity. ChemMedChem, 2011, 6, 2252-2263.	3.2	17
65	Synthesis and Evaluation of New Thiodigalactosideâ€Based Chemical Probes to Label Galectinâ€3. ChemBioChem, 2009, 10, 1724-1733.	2.6	36
66	New thiopyrazolo [3,4-d] pyrimidine derivatives as anti-mycobacterial agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1736-1740.	2.2	101
67	A new chemical probe for the detection of the cancer-linked galectin-3. Organic and Biomolecular Chemistry, 2006, 4, 4387.	2.8	52
68	A New Chemical Probe for Proteomics of Carbohydrate-Binding Proteins. ChemBioChem, 2005, 6, 291-295.	2.6	63
69	New Small-Molecule Synthetic Antimycobacterials. Antimicrobial Agents and Chemotherapy, 2005, 49, 2153-2163.	3.2	159
70	Synthesis and evaluation of mimetics of UDP and UDP-α-d-galactose, dTDP and dTDP-α-d-glucose with monosaccharides replacing the key pyrophosphate unit. Organic and Biomolecular Chemistry, 2005, 3, 1109-1115.	2.8	22
71	Microwave-assisted, tin-mediated, regioselective 3-O-alkylation of galactosides. Tetrahedron Letters, 2004, 45, 6685-6687.	1.4	27
72	Amino alditols as inhibitors of mycobacterial cell wall biosynthesis. Biochemical Society Transactions, 2002, 30, A27-A27.	3.4	0

#	Article	IF	CITATIONS
73	An open toolkit for tracking open science partnership implementation and impact. Gates Open Research, 0, 3, 1442.	1.1	2