LluÃ-s Ballell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846124/publications.pdf Version: 2024-02-01

Ιιμίδο Βλιιρι

#	Article	IF	CITATIONS
1	Fueling Openâ€Source Drug Discovery: 177 Smallâ€Molecule Leads against Tuberculosis. ChemMedChem, 2013, 8, 313-321.	3.2	277
2	Identification of Novel Imidazo[1,2-a]pyridine Inhibitors Targeting M. tuberculosis QcrB. PLoS ONE, 2012, 7, e52951.	2.5	162
3	New Small-Molecule Synthetic Antimycobacterials. Antimicrobial Agents and Chemotherapy, 2005, 49, 2153-2163.	3.2	159
4	Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] Analogues with Bactericidal Efficacy against Mycobacterium tuberculosis Targeting MmpL3. PLoS ONE, 2013, 8, e60933.	2.5	123
5	β-Lactams against Tuberculosis — New Trick for an Old Dog?. New England Journal of Medicine, 2016, 375, 393-394.	27.0	111
6	Encoded Library Technology as a Source of Hits for the Discovery and Lead Optimization of a Potent and Selective Class of Bactericidal Direct Inhibitors of <i>Mycobacterium tuberculosis</i> InhA. Journal of Medicinal Chemistry, 2014, 57, 1276-1288.	6.4	105
7	New thiopyrazolo[3,4-d]pyrimidine derivatives as anti-mycobacterial agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1736-1740.	2.2	101
8	A new piperidinol derivative targeting mycolic acid transport in <i>Mycobacterium abscessus</i> . Molecular Microbiology, 2016, 101, 515-529.	2.5	100
9	Rapid Cytolysis of Mycobacterium tuberculosis by Faropenem, an Orally Bioavailable β-Lactam Antibiotic. Antimicrobial Agents and Chemotherapy, 2015, 59, 1308-1319.	3.2	92
10	Improved BM212 MmpL3 Inhibitor Analogue Shows Efficacy in Acute Murine Model of Tuberculosis Infection. PLoS ONE, 2013, 8, e56980.	2.5	90
11	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
12	Identification of KasA as the cellular target of an anti-tubercular scaffold. Nature Communications, 2016, 7, 12581.	12.8	72
13	Repurposing clinically approved cephalosporins for tuberculosis therapy. Scientific Reports, 2016, 6, 34293.	3.3	66
14	A New Chemical Probe for Proteomics of Carbohydrate-Binding Proteins. ChemBioChem, 2005, 6, 291-295.	2.6	63
15	Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine, 2016, 8, 291-301.	6.1	60
16	Design, Synthesis, and Evaluation of New Thiadiazole-Based Direct Inhibitors of Enoyl Acyl Carrier Protein Reductase (InhA) for the Treatment of Tuberculosis. Journal of Medicinal Chemistry, 2015, 58, 613-624.	6.4	58
17	THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria. Nature Microbiology, 2016, 1, 15006.	13.3	57
18	Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nature Communications, 2017, 8, 16081.	12.8	57

LLUÃS BALLELL

#	Article	IF	CITATIONS
19	A new chemical probe for the detection of the cancer-linked galectin-3. Organic and Biomolecular Chemistry, 2006, 4, 4387.	2.8	52
20	Testing Tuberculosis Drug Efficacy in a Zebrafish High-Throughput Translational Medicine Screen. Antimicrobial Agents and Chemotherapy, 2015, 59, 753-762.	3.2	52
21	Mycobacterium tuberculosis Gyrase Inhibitors as a New Class of Antitubercular Drugs. Antimicrobial Agents and Chemotherapy, 2015, 59, 1868-1875.	3.2	52
22	Whole Cell Target Engagement Identifies Novel Inhibitors of <i>Mycobacterium tuberculosis</i> Decaprenylphosphoryl-β- <scp>d</scp> -ribose Oxidase. ACS Infectious Diseases, 2015, 1, 615-626.	3.8	51
23	Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Scientific Reports, 2017, 7, 9430.	3.3	48
24	Searching for New Leads for Tuberculosis: Design, Synthesis, and Biological Evaluation of Novel 2-Quinolin-4-yloxyacetamides. Journal of Medicinal Chemistry, 2016, 59, 6709-6728.	6.4	41
25	A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Scientific Reports, 2018, 8, 3187.	3.3	41
26	Mycobacterial Dihydrofolate Reductase Inhibitors Identified Using Chemogenomic Methods and In Vitro Validation. PLoS ONE, 2015, 10, e0121492.	2.5	40
27	Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1. Scientific Reports, 2018, 8, 13473.	3.3	39
28	In vivo Enhancement in Bioavailability of Atazanavir in the Presence of Protonâ€Pump Inhibitors using Mesoporous Materials. ChemMedChem, 2012, 7, 43-48.	3.2	38
29	Release of 50 new, drug-like compounds and their computational target predictions for open source anti-tubercular drug discovery. PLoS ONE, 2015, 10, e0142293.	2.5	38
30	Combinations of β-Lactam Antibiotics Currently in Clinical Trials Are Efficacious in a DHP-I-Deficient Mouse Model of Tuberculosis Infection. Antimicrobial Agents and Chemotherapy, 2015, 59, 4997-4999.	3.2	37
31	Novel Pyrazole-Containing Compounds Active against <i>Mycobacterium tuberculosis</i> . ACS Medicinal Chemistry Letters, 2019, 10, 1423-1429.	2.8	37
32	Synthesis and Evaluation of New Thiodigalactosideâ€Based Chemical Probes to Label Galectinâ€3. ChemBioChem, 2009, 10, 1724-1733.	2.6	36
33	The antibiotic cyclomarin blocks arginine-phosphate–induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2018, 293, 8379-8393.	3.4	36
34	A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors. ACS Infectious Diseases, 2017, 3, 428-437.	3.8	34
35	High-Content Screening Technology Combined with a Human Granuloma Model as a New Approach To Evaluate the Activities of Drugs against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 693-697.	3.2	33
36	Biochemical and Structural Characterization of Mycobacterial Aspartyl-tRNA Synthetase AspS, a Promising TB Drug Target. PLoS ONE, 2014, 9, e113568.	2.5	31

LLUÃS BALLELL

#	Article	IF	CITATIONS
37	Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Scientific Reports, 2018, 8, 3939.	3.3	30
38	ldentification and Profiling of Hydantoins—A Novel Class of Potent Antimycobacterial DprE1 Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 11221-11249.	6.4	30
39	Design, synthesis and structure-activity relationship study of wollamide B; a new potential anti TB agent. PLoS ONE, 2017, 12, e0176088.	2.5	30
40	Hydrolysis of Clavulanate by Mycobacterium tuberculosis β-Lactamase BlaC Harboring a Canonical SDN Motif. Antimicrobial Agents and Chemotherapy, 2015, 59, 5714-5720.	3.2	28
41	<i>N</i> â€Benzylâ€4â€((heteroaryl)methyl)benzamides: A New Class of Direct NADHâ€Dependent 2â€ <i>trans<, Enoyl–Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity. ChemMedChem, 2016, 11, 687-701.</i>	/i> 3.2	28
42	Microwave-assisted, tin-mediated, regioselective 3-O-alkylation of galactosides. Tetrahedron Letters, 2004, 45, 6685-6687.	1.4	27
43	Large pore mesoporous silica induced weight loss in obese mice. Nanomedicine, 2014, 9, 1353-1362.	3.3	27
44	<i>In vivo</i> oral toxicological evaluation of mesoporous silica particles. Nanomedicine, 2013, 8, 57-64.	3.3	24
45	Synthesis and evaluation of mimetics of UDP and UDP-î±-d-galactose, dTDP and dTDP-î±-d-glucose with monosaccharides replacing the key pyrophosphate unit. Organic and Biomolecular Chemistry, 2005, 3, 1109-1115.	2.8	22
46	Novel inhibitors of Mycobacterium tuberculosis GuaB2 identified by a target based high-throughput phenotypic screen. Scientific Reports, 2016, 6, 38986.	3.3	22
47	Novel Antitubercular 6-Dialkylaminopyrimidine Carboxamides from Phenotypic Whole-Cell High Throughput Screening of a SoftFocus Library: Structure–Activity Relationship and Target Identification Studies. Journal of Medicinal Chemistry, 2017, 60, 10118-10134.	6.4	22
48	Target Identification of Mycobacterium tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach. Frontiers in Pharmacology, 2017, 8, 681.	3.5	22
49	InÂvivo potent BM635 analogue with improved drug-like properties. European Journal of Medicinal Chemistry, 2018, 145, 539-550.	5.5	22
50	Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities. Nanomaterials, 2014, 4, 813-826.	4.1	21
51	A Focused Screen Identifies Antifolates with Activity on <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2015, 1, 604-614.	3.8	21
52	New direct inhibitors of InhA with antimycobacterial activity based on a tetrahydropyran scaffold. European Journal of Medicinal Chemistry, 2016, 112, 252-257.	5.5	20
53	Identification and characterization of aspartyl-tRNA synthetase inhibitors against Mycobacterium tuberculosis by an integrated whole-cell target-based approach. Scientific Reports, 2018, 8, 12664.	3.3	20
54	Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β- <scp>d</scp> -Ribose Oxidase (DprE1) Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 5367-5386.	6.4	18

LLUÃS BALLELL

#	Article	IF	CITATIONS
55	4‣ubstituted Thioquinolines and Thiazoloquinolines: Potent, Selective, and Tweenâ€80 inâ€vitro Dependent Families of Antitubercular Agents with Moderate inâ€vivo Activity. ChemMedChem, 2011, 6, 2252-2263.	3.2	17
56	Carbamoyl Triazoles, Known Serine Protease Inhibitors, Are a Potent New Class of Antimalarials. Journal of Medicinal Chemistry, 2015, 58, 6448-6455.	6.4	17
57	Accelerating Early Antituberculosis Drug Discovery by Creating Mycobacterial Indicator Strains That Predict Mode of Action. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	15
58	A Developability-Focused Optimization Approach Allows Identification of in Vivo Fast-Acting Antimalarials: N-[3-[(Benzimidazol-2-yl)amino]propyl]amides. Journal of Medicinal Chemistry, 2015, 58, 4573-4580.	6.4	12
59	MymA Bioactivated Thioalkylbenzoxazole Prodrug Family Active against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2020, 63, 4732-4748.	6.4	12
60	Discovery of novel InhA reductase inhibitors: application of pharmacophore- and shape-based screening approach. Future Medicinal Chemistry, 2013, 5, 249-259.	2.3	11
61	Open Lab as a source of hits and leads against tuberculosis, malaria and kinetoplastid diseases. Nature Reviews Drug Discovery, 2016, 15, 292-292.	46.4	10
62	Pharmaceutical salt of BM635 with improved bioavailability. European Journal of Pharmaceutical Sciences, 2017, 99, 17-23.	4.0	10
63	An open toolkit for tracking open science partnership implementation and impact. Gates Open Research, 2019, 3, 1442.	1.1	10
64	The small-molecule SMARt751 reverses <i>Mycobacterium tuberculosis</i> resistance to ethionamide in acute and chronic mouse models of tuberculosis. Science Translational Medicine, 2022, 14, eaaz6280.	12.4	10
65	Repurposing Infectious Disease Hits as Anti- <i>Cryptosporidium</i> Leads. ACS Infectious Diseases, 2021, 7, 1275-1282.	3.8	8
66	Non-absorbable mesoporous silica for the development of protein sequestration therapies. Biochemical and Biophysical Research Communications, 2015, 468, 428-434.	2.1	7
67	Fighting Shigella by Blocking Its Disease-Causing Toxin. Journal of Medicinal Chemistry, 2021, 64, 6059-6069.	6.4	7
68	Tebipenem as an oral alternative for the treatment of typhoid caused by XDR <i>Salmonella</i> Typhi. Journal of Antimicrobial Chemotherapy, 2021, 76, 3197-3200.	3.0	7
69	The repurposing of Tebipenem pivoxil as alternative therapy for severe gastrointestinal infections caused by extensively drug-resistant Shigella spp. ELife, 2022, 11, .	6.0	6
70	Synthesis, antimycobacterial activity and influence on mycobacterial InhA and PknB of 12-membered cyclodepsipeptides. Bioorganic and Medicinal Chemistry, 2018, 26, 3166-3190.	3.0	2
71	Tres Cantos Open Lab: celebrating a decade of innovation in collaboration to combat endemic infectious diseases. Nature Reviews Drug Discovery, 2021, 20, 799-800.	46.4	2
72	An open toolkit for tracking open science partnership implementation and impact. Gates Open Research, 0, 3, 1442.	1.1	2

#	Article	IF	CITATIONS
73	Amino alditols as inhibitors of mycobacterial cell wall biosynthesis. Biochemical Society Transactions, 2002, 30, A27-A27.	3.4	0