
Francois Gallaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3846103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of microfluidic droplets. Lab on A Chip, 2010, 10, 2032.	3.1	828
2	Spiral vortex breakdown as a global mode. Journal of Fluid Mechanics, 2006, 549, 71.	1.4	137
3	Mode selection in swirling jet experiments: a linear stability analysis. Journal of Fluid Mechanics, 2003, 494, 223-253.	1.4	133
4	Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. Journal of Fluid Mechanics, 2013, 737, 499-526.	1.4	107
5	Global two-dimensional stability measures of the flat plate boundary-layer flow. European Journal of Mechanics, B/Fluids, 2008, 27, 501-513.	1.2	105
6	Prediction of the hub vortex instability in a wind turbine wake: stability analysis with eddy-viscosity models calibrated on wind tunnel data. Journal of Fluid Mechanics, 2014, 750, .	1.4	89
7	Fabrication of slender elastic shells by the coating of curved surfaces. Nature Communications, 2016, 7, 11155.	5.8	80
8	Self-Consistent Mean Flow Description of the Nonlinear Saturation of the Vortex Shedding in the Cylinder Wake. Physical Review Letters, 2014, 113, 084501.	2.9	79
9	A weakly nonlinear mechanism for mode selection in swirling jets. Journal of Fluid Mechanics, 2012, 699, 216-262.	1.4	78
10	Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. Journal of Fluid Mechanics, 2005, 542, 365.	1.4	75
11	Fluid dynamic instabilities: theory and application to pattern forming in complex media. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160155.	1.6	62
12	Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets. Physics of Fluids, 2011, 23, .	1.6	58
13	Part Load Vortex Rope as a Global Unstable Mode. Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .	0.8	58
14	Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing. Physical Review Applied, 2016, 6, .	1.5	55
15	Origin of the synchronous pressure fluctuations in the draft tube of Francis turbines operating at part load conditions. Journal of Fluids and Structures, 2019, 86, 13-33.	1.5	53
16	Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. ELife, 2020, 9, .	2.8	52
17	The role of boundary conditions in a simple model of incipient vortex breakdown. Physics of Fluids, 2004, 16, 274-286.	1.6	47
18	Sensitivity of aerodynamic forces in laminar and turbulent flow past a square cylinder. Physics of Fluids, 2014, 26, .	1.6	38

#	Article	IF	CITATIONS
19	Vortex-Breakdown-Induced Particle Capture in Branching Junctions. Physical Review Letters, 2016, 117, 084501.	2.9	36
20	Viscous Taylor droplets in axisymmetric and planar tubes: from Bretherton's theory to empirical models. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	35
21	Rayleigh-Taylor instability under an inclined plane. Physics of Fluids, 2015, 27, .	1.6	34
22	A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake. Physics of Fluids, 2015, 27, .	1.6	33
23	Flow dynamics of a dandelion pappus: A linear stability approach. Physical Review Fluids, 2019, 4, .	1.0	31
24	Boundary elements method for microfluidic two-phase flows in shallow channels. Computers and Fluids, 2015, 107, 272-284.	1.3	30
25	A pancake droplet translating in a Hele-Shaw cell: lubrication film and flow field. Journal of Fluid Mechanics, 2016, 798, 955-969.	1.4	30
26	Inertial manipulation of bubbles in rectangular microfluidic channels. Lab on A Chip, 2018, 18, 1035-1046.	3.1	30
27	Suppression of von Kármán vortex streets past porous rectangular cylinders. Physical Review Fluids, 2018, 3, .	1.0	29
28	Marangoni induced force on a drop in a Hele Shaw cell. Physics of Fluids, 2014, 26, .	1.6	28
29	Physics of Bubbleâ€Propelled Microrockets. Advanced Functional Materials, 2018, 28, 1800686.	7.8	28
30	Optimal Control of Part Load Vortex Rope in Francis Turbines. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	0.8	26
31	A new prediction of wavelength selection in radial viscous fingering involving normal and tangential stresses. Physics of Fluids, 2013, 25, .	1.6	25
32	Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics. Physical Review Fluids, 2016, 1, .	1.0	25
33	Sensitivity and open-loop control of stochastic response in a noise amplifier flow: theÂbackward-facing step. Journal of Fluid Mechanics, 2015, 762, 361-392.	1.4	24
34	Dynamics of falling films on the outside of aÂvertical rotating cylinder: waves, rivulets andÂdripping transitions. Journal of Fluid Mechanics, 2017, 832, 189-211.	1.4	24
35	Closed-loop control of vortex breakdown: a model study. Journal of Fluid Mechanics, 2004, 511, 67-93.	1.4	22
36	Mode selection in trailing vortices: harmonic response of the non-parallel Batchelor vortex. Journal of Fluid Mechanics, 2016, 790, 523-552.	1.4	22

#	Article	IF	CITATIONS
37	A numerical study of droplet trapping in microfluidic devices. Physics of Fluids, 2014, 26, 032002.	1.6	20
38	Predictive control of spiral vortex breakdown. Journal of Fluid Mechanics, 2018, 842, 58-86.	1.4	20
39	Capillary hysteresis in sloshing dynamics: aÂweakly nonlinear analysis. Journal of Fluid Mechanics, 2018, 837, 788-818.	1.4	20
40	Control of axisymmetric vortex breakdown in a constricted pipe: Nonlinear steady states and weakly nonlinear asymptotic expansions. Physics of Fluids, 2011, 23, .	1.6	19
41	Controlled reattachment in separated flows: a variational approach to recirculation length reduction. Journal of Fluid Mechanics, 2014, 742, 618-635.	1.4	19
42	Prediction of two-dimensional dripping onset of a liquid film under an inclined plane. International Journal of Multiphase Flow, 2018, 104, 286-293.	1.6	19
43	Three-dimensional Rayleigh–Taylor instability under a unidirectional curved substrate. Journal of Fluid Mechanics, 2018, 837, 19-47.	1.4	19
44	Instability of a thin viscous film flowing under an inclined substrate: steady patterns. Journal of Fluid Mechanics, 2020, 898, .	1.4	18
45	The influence of shear layer thickness on the stability of confined two-dimensional wakes. Physics of Fluids, 2011, 23, .	1.6	17
46	A unified criterion for the centrifugal instabilities of vortices and swirling jets. Journal of Fluid Mechanics, 2013, 734, 5-35.	1.4	17
47	A self-consistent formulation for the sensitivity analysis of finite-amplitude vortex shedding in the cylinder wake. Journal of Fluid Mechanics, 2016, 800, 327-357.	1.4	17
48	Self-consistent model for the saturation mechanism of the response to harmonic forcing in the backward-facing step flow. Journal of Fluid Mechanics, 2016, 793, 777-797.	1.4	17
49	Ultralow Interfacial Tension Measurement through Jetting/Dripping Transition. Langmuir, 2017, 33, 2531-2540.	1.6	17
50	Bifurcation Dynamics of a Particle-Encapsulating Droplet in Shear Flow. Physical Review Letters, 2017, 119, 064502.	2.9	17
51	Theoretical framework to analyze the combined effect of surface tension and viscosity on the damping rate of sloshing waves. Physical Review Fluids, 2018, 3, .	1.0	17
52	Foam on troubled water: Capillary induced finite-time arrest of sloshing waves. Physics of Fluids, 2016, 28, 091701.	1.6	16
53	Oscillations of confined fibres transported in microchannels. Journal of Fluid Mechanics, 2018, 835, 444-470.	1.4	16
54	Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis. Physical Review Fluids, 2016, 1, .	1.0	16

#	Article	IF	CITATIONS
55	Open-loop control of noise amplification in a separated boundary layer flow. Physics of Fluids, 2013, 25, .	1.6	15
56	Rayleigh-Taylor instability under a spherical substrate. Physical Review Fluids, 2018, 3, .	1.0	15
57	Transport of flexible fibers in confined microchannels. Physical Review Fluids, 2019, 4, .	1.0	15
58	Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flowÂmodifications. Journal of Fluid Mechanics, 2015, 782, 491-514.	1.4	14
59	Deformation of porous flexible strip in low and moderate Reynolds number flows. Physical Review Fluids, 2020, 5, .	1.0	14
60	Environmental Control of Amyloid Polymorphism by Modulation of Hydrodynamic Stress. ACS Nano, 2021, 15, 944-953.	7.3	13
61	Obstacle-induced spiral vortex breakdown. Experiments in Fluids, 2014, 55, 1.	1.1	12
62	Film thickness distribution in gravity-driven pancake-shaped droplets rising in a Hele-ShawÂcell. Journal of Fluid Mechanics, 2019, 874, 1021-1040.	1.4	12
63	Edge states control droplet breakup in subcritical extensional flows. Physical Review Fluids, 2018, 3, .	1.0	12
64	Instability of a thin viscous film flowing under an inclined substrate: the emergence and stability of rivulets. Journal of Fluid Mechanics, 2020, 904, .	1.4	11
65	Effective stress jump across membranes. Journal of Fluid Mechanics, 2020, 892, .	1.4	11
66	Second-order sensitivity in the cylinder wake: Optimal spanwise-periodic wall actuation and wall deformation. Physical Review Fluids, 2019, 4, .	1.0	11
67	Unraveling radial dependency effects in fiber thermal drawing. Applied Physics Letters, 2019, 115, .	1.5	10
68	Transition from Exponentially Damped to Finite-Time Arrest Liquid Oscillations Induced by Contact Line Hysteresis. Physical Review Letters, 2020, 124, 104502.	2.9	10
69	Feedback-free microfluidic oscillator with impinging jets. Physical Review Fluids, 2020, 5, .	1.0	10
70	Spatio-temporal stability of the Kármán vortex street and the effect of confinement. Journal of Fluid Mechanics, 2016, 795, 187-209.	1.4	9
71	Impinging planar jets: hysteretic behaviour and origin of the self-sustained oscillations. Journal of Fluid Mechanics, 2021, 913, .	1.4	9
72	The stability of a rising droplet: an inertialess non-modal growth mechanism. Journal of Fluid Mechanics, 2016, 786, .	1.4	8

#	Article	IF	CITATIONS
73	Saturation of the response to stochastic forcing in two-dimensional backward-facing step flow: A self-consistent approximation. Physical Review Fluids, 2016, 1, .	1.0	8
74	Hydrodynamic loading of perforated disks in creeping flows. Physical Review Fluids, 2019, 4, .	1.0	8
75	Dripping down the rivulet. Physical Review Fluids, 2019, 4, .	1.0	8
76	An amplitude equation modelling the double-crest swirling in orbital-shaken cylindrical containers. Journal of Fluid Mechanics, 2022, 943, .	1.4	8
77	Fingering instability on curved substrates: optimal initial film and substrate perturbations. Journal of Fluid Mechanics, 2019, 868, 726-761.	1.4	7
78	Hydrodynamic-driven morphogenesis of karst draperies: spatio-temporal analysis of the two-dimensional impulse response. Journal of Fluid Mechanics, 2021, 910, .	1.4	7
79	Homogenization-based design of microstructured membranes: wake flows past permeable shells. Journal of Fluid Mechanics, 2021, 927, .	1.4	7
80	Particle size selection in capillary instability of locally heated coaxial fiber. Physical Review Fluids, 2019, 4, .	1.0	7
81	Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140365.	1.0	6
82	Sloshing in a Hele-Shaw cell: experiments and theory. Journal of Fluid Mechanics, 2017, 831, .	1.4	6
83	The Hydrodynamics of a Micro-Rocket Propelled by a Deformable Bubble. Fluids, 2019, 4, 48.	0.8	6
84	Viscous growth and rebound of a bubble near a rigid surface. Journal of Fluid Mechanics, 2019, 860, 172-199.	1.4	6
85	Onset of chaos in helical vortex breakdown at low Reynolds number. Physical Review Fluids, 2018, 3, .	1.0	6
86	Relaxation of capillary-gravity waves due to contact line nonlinearity: A projection method. Chaos, 2021, 31, 123124.	1.0	6
87	On the effect of a penetrating recirculation region on the bifurcations of the flow past a permeable sphere. Physics of Fluids, 2021, 33, .	1.6	6
88	Drops on the Underside of a Slightly Inclined Wet Substrate Move Too Fast to Grow. Physical Review Letters, 2021, 127, 044503.	2.9	5
89	Self-consistent triple decomposition of the turbulent flow over a backward-facing step under finite amplitude harmonic forcing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190018.	1.0	4
90	Everything in its right place: controlling the local composition of hydrogels using microfluidic traps. Lab on A Chip, 2020, 20, 4572-4581.	3.1	4

#	Article	IF	CITATIONS
91	Nonlinear evolution of the centrifugal instability using a semilinear model. Journal of Fluid Mechanics, 2020, 897, .	1.4	4
92	Leidenfrost flows: instabilities and symmetry breakings. Flow, 2022, 2, .	1.0	4
93	Influence of the inlet velocity profile on the flow stability in a symmetric channel expansion. Journal of Fluid Mechanics, 2021, 909, .	1.4	3
94	The influence of the entry region on the instability of a coflowing injector device. Journal of Physics Condensed Matter, 2018, 30, 284003.	0.7	2
95	Two-dimensional modelling of transient capillary driven damped micro-oscillations and self-alignment of objects in microassembly. Journal of Fluid Mechanics, 2021, 910, .	1.4	2
96	Secondary instability in thin film flows under an inclined plane: growth of lenses on spatially developing rivulets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	2
97	Absolute/convective secondary instabilities and the role of confinement in free shear layers. Physical Review Fluids, 2018, 3, .	1.0	2
98	Swinging jets. Physical Review Fluids, 2020, 5, .	1.0	2
99	Beer tapping: dynamics of bubbles after impact. Journal of Physics: Conference Series, 2015, 656, 012029.	0.3	1
100	The motion of a 2D pendulum in a channel subjected to an incoming flow. Journal of Fluid Mechanics, 2015, 764, 5-25.	1.4	1
101	Flow control of weakly non-parallel flows: application to trailing vortices. Journal of Fluid Mechanics, 2017, 822, 342-363.	1.4	1
102	Frequency selection in a gravitationally stretched capillary jet in the jetting regime. Journal of Fluid Mechanics, 2020, 894, .	1.4	1
103	Vortex impingement onto an axisymmetric obstacle – subcritical bifurcation to vortex breakdown. Journal of Fluid Mechanics, 2021, 910, .	1.4	1
104	Optimal spanwise-periodic control for recirculation length in a backward-facing step flow. Physical Review Fluids, 2020, 5, .	1.0	1
105	Hydrodynamic-driven morphogenesis of karst draperies: spatio-temporal analysis of the two-dimensional impulse response – CORRIGENDUM. Journal of Fluid Mechanics, 2021, 926, .	1.4	0
106	Prediction of Self-Assembled Dewetted Nanostructures for Photonics Applications via a Continuum-Mechanics Framework. Physical Review Applied, 2021, 16, .	1.5	0
107	Instability of a thin viscous film flowing under an inclined substrate: the emergence and stability of rivulets $\hat{a} \in CORRIGENDUM$. Journal of Fluid Mechanics, 2021, 926, .	1.4	0
108	Instability of a thin viscous film flowing under an inclined substrate: steady patterns – CORRIGENDUM. Journal of Fluid Mechanics, 2021, 926, .	1.4	0