Marco Antonio Maximo Prado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3845824/publications.pdf

Version: 2024-02-01

MARCO ANTONIO MAXIMO

#	Article	IF	CITATIONS
1	Homeostatic plasticity induced by increased acetylcholine release at the mouse neuromuscular junction. Neurobiology of Aging, 2022, 110, 13-26.	3.1	2
2	Functional dissociation of behavioral effects from acetylcholine and glutamate released from cholinergic striatal interneurons. FASEB Journal, 2022, 36, e22135.	0.5	4
3	Neuronal cholinergic signaling constrains norepinephrine activity in the heart. American Journal of Physiology - Cell Physiology, 2022, 322, C794-C801.	4.6	Ο
4	Editorial: Exciting developments in neurochemistry research and publishing. Journal of Neurochemistry, 2022, , .	3.9	0
5	Aerobic exercise training engages cholinergic signaling to improve emphysema induced by cigarette smoke exposure in mice. Life Sciences, 2022, 301, 120599.	4.3	0
6	New frontiers in translational research: Touchscreens, open science, and the mouse translational research accelerator platform. Genes, Brain and Behavior, 2021, 20, e12705.	2.2	18
7	Protective and anti-inflammatory effects of acetylcholine in the heart. American Journal of Physiology - Cell Physiology, 2021, 320, C155-C161.	4.6	10
8	Tardive neurotoxicity of anticholinergic drugs: A review. Journal of Neurochemistry, 2021, 158, 1334-1344.	3.9	10
9	Increased cholinergic activity under conditions of low estrogen leads to adverse cardiac remodeling. American Journal of Physiology - Cell Physiology, 2021, 320, C602-C612.	4.6	4
10	Mutant Cx30-A88V mice exhibit hydrocephaly and sex-dependent behavioral abnormalities, implicating a functional role for Cx30 in the brain. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	5
11	Forebrain Acetylcholine Modulates Isoflurane and Ketamine Anesthesia in Adult Mice. Anesthesiology, 2021, 134, 588-606.	2.5	13
12	Lung Edema and Mortality Induced by Intestinal Ischemia and Reperfusion Is Regulated by VAChT Levels in Female Mice. Inflammation, 2021, 44, 1553-1564.	3.8	2
13	Repetitive mild traumatic brain injury in mice triggers a slowly developing cascade of long-term and persistent behavioral deficits and pathological changes. Acta Neuropathologica Communications, 2021, 9, 60.	5.2	31
14	Hsp90 and its coâ€chaperone Sti1 control TDPâ€43 misfolding and toxicity. FASEB Journal, 2021, 35, e21594.	0.5	19
15	Motoneuronâ€specific loss of VAChT mimics neuromuscular defects seen in congenital myasthenic syndrome. FEBS Journal, 2021, 288, 5331-5349.	4.7	4
16	Increased Cholinergic Tone Causes Pre-synaptic Neuromuscular Degeneration and is Associated with Impaired Diaphragm Function. Neuroscience, 2021, 460, 31-42.	2.3	2
17	Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiology of Learning and Memory, 2021, 182, 107443.	1.9	19
18	Acute Lung Injury in Cholinergic-Deficient Mice Supports Anti-Inflammatory Role of α7 Nicotinic Acetylcholine Receptor. International Journal of Molecular Sciences, 2021, 22, 7552.	4.1	6

#	Article	IF	CITATIONS
19	Long-term endogenous acetylcholine deficiency potentiates pulmonary inflammation in a murine model of elastase-induced emphysema. Scientific Reports, 2021, 11, 15918.	3.3	1
20	Cholinergic transmission from the basal forebrain modulates social memory in male mice. European Journal of Neuroscience, 2021, 54, 6075-6092.	2.6	8
21	Evaluating Sequential Response Learning in the Rodent Operant Touchscreen System. Current Protocols, 2021, 1, e268.	2.9	3
22	Modulation of hippocampal neuronal resilience during aging by the Hsp70/Hsp90 co haperone STI1. Journal of Neurochemistry, 2020, 153, 727-758.	3.9	16
23	Infiltrating Hematogenous Macrophages Aggregate Around β-Amyloid Plaques in an Age- and Sex-Dependent Manner in a Mouse Model of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1147-1162.	1.7	6
24	An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods, 2020, 17, 1139-1146.	19.0	220
25	Striatal Acetylcholine Helps to Preserve Functional Outcomes in a Mouse Model of Stroke. ASN Neuro, 2020, 12, 175909142096161.	2.7	5
26	Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 143.	5.2	13
27	Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain, Behavior, and Immunity, 2020, 88, 791-801.	4.1	32
28	Effects of VAChT reduction and α7nAChR stimulation by PNU-282987 in lung inflammation in a model of chronic allergic airway inflammation. European Journal of Pharmacology, 2020, 882, 173239.	3.5	12
29	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	8.1	109
30	Cholinergic dysfunction in the dorsal striatum promotes habit formation and maladaptive eating. Journal of Clinical Investigation, 2020, 130, 6616-6630.	8.2	29
31	Evaluation of the neuromuscular junction in a middleâ€aged mouse model of congenital myasthenic syndrome. Muscle and Nerve, 2019, 60, 790-800.	2.2	2
32	Forebrain Cholinergic Signaling Regulates Innate Immune Responses and Inflammation. Frontiers in Immunology, 2019, 10, 585.	4.8	55
33	Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB Journal, 2019, 33, 7018-7036.	0.5	18
34	Detection of Active Caspase-3 in Mouse Models of Stroke and Alzheimer's Disease with a Novel Dual Positron Emission Tomography/Fluorescent Tracer [⁶⁸ Ga]Ga-TC3-OGDOTA. Contrast Media and Molecular Imaging, 2019, 2019, 1-17.	0.8	17
35	Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nature Medicine, 2019, 25, 165-175.	30.7	511
36	Dissociable cognitive impairments in two strains of transgenic Alzheimer's disease mice revealed by a battery of object-based tests. Scientific Reports, 2019, 9, 57.	3.3	45

#	Article	IF	CITATIONS
37	Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles. Ecotoxicology and Environmental Safety, 2019, 167, 494-504.	6.0	14
38	MouseBytes, an open-access high-throughput pipeline and database for rodent touchscreen-based cognitive assessment. ELife, 2019, 8, .	6.0	38
39	Estradiol effect on short-term object memory under hypocholinergic condition. Brain Research Bulletin, 2018, 140, 411-417.	3.0	6
40	Histamine H 3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons. Neuroscience, 2018, 376, 188-203.	2.3	17
41	Mechanisms of neuroprotection against ischemic insult by stressâ€inducible phosphoproteinâ€1/prion protein complex. Journal of Neurochemistry, 2018, 145, 68-79.	3.9	15
42	Fast and slow-twitching muscles are differentially affected by reduced cholinergic transmission in mice deficient for VAChT: A mouse model for congenital myasthenia. Neurochemistry International, 2018, 120, 1-12.	3.8	11
43	Prion (PRNP). , 2018, , 4164-4180.		1
44	Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cerebral Cortex, 2017, 27, bhw177.	2.9	42
45	Regulation of Cognitive Processing by Hippocampal Cholinergic Tone. Cerebral Cortex, 2017, 27, bhv349.	2.9	34
46	Mosaic expression of Atrx in the central nervous system causes memory deficits. DMM Disease Models and Mechanisms, 2017, 10, 119-126.	2.4	15
47	Molecular basis for the interaction between stress-inducible phosphoprotein 1 (STIP1) and S100A1. Biochemical Journal, 2017, 474, 1853-1866.	3.7	6
48	Cholinergic/glutamatergic coâ€ŧransmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. Journal of Neurochemistry, 2017, 142, 90-102.	3.9	35
49	Synthetic triterpenoids inhibit GSK3β activity and localization and affect focal adhesions and cell migration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1274-1284.	4.1	9
50	Reduced Vesicular Acetylcholine Transporter favors antidepressant behaviors and modulates serotonin and dopamine in female mouse brain. Behavioural Brain Research, 2017, 330, 127-132.	2.2	9
51	Vesicular acetylcholine transporter (<scp>VAC</scp> hT) overâ€expression induces major modifications of striatal cholinergic interneuron morphology and function. Journal of Neurochemistry, 2017, 142, 857-875.	3.9	23
52	Preface: Cholinergic Mechanisms. Journal of Neurochemistry, 2017, 142, 3-6.	3.9	4
53	Cholinergic circuits in cognitive flexibility. Neuroscience, 2017, 345, 130-141.	2.3	102
54	Acute lung injury is reduced by the α7nAChR agonist PNUâ€⊋82987 through changes in the macrophage profile. FASEB Journal, 2017, 31, 320-332.	0.5	78

#	Article	IF	CITATIONS
55	Deletion of the vesicular acetylcholine transporter from pedunculopontine/laterodorsal tegmental neurons modifies gait. Journal of Neurochemistry, 2017, 140, 787-798.	3.9	34
56	The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Frontiers in Neuroscience, 2017, 11, 254.	2.8	277
57	Endogenous Acetylcholine Controls the Severity of Polymicrobial Sepsisassociated Inflammatory Response in Mice. Current Neurovascular Research, 2016, 13, 4-9.	1.1	9
58	Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behavioural Brain Research, 2016, 311, 267-278.	2.2	11
59	Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c- Fos expression and sickness behavior induced by lipopolysaccharide. Brain, Behavior, and Immunity, 2016, 57, 282-292.	4.1	32
60	Prion protein in exosomes: partnering AÎ ² peptides and driving fibrilization. Journal of Neurochemistry, 2016, 137, 9-11.	3.9	1
61	Regulation of Amyloid β Oligomer Binding to Neurons and Neurotoxicity by the Prion Protein-mGluR5 Complex. Journal of Biological Chemistry, 2016, 291, 21945-21955.	3.4	51
62	Reduced expression of VAChT increases renal fibrosis. Pathophysiology, 2016, 23, 229-236.	2.2	6
63	Domains of STIP1 responsible for regulating PrPC-dependent amyloid-β oligomer toxicity. Biochemical Journal, 2016, 473, 2119-2130.	3.7	23
64	VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions. Skeletal Muscle, 2016, 6, 31.	4.2	59
65	Commemorating John F. MacDonald and the Art of Being a Mentor. Canadian Journal of Neurological Sciences, 2016, 43, 735-744.	0.5	0
66	Cholinergic Regulation of hnRNPA2/B1 Translation by M1 Muscarinic Receptors. Journal of Neuroscience, 2016, 36, 6287-6296.	3.6	25
67	Role of the atypical vesicular glutamate transporter VGLUT3 in I-DOPA-induced dyskinesia. Neurobiology of Disease, 2016, 87, 69-79.	4.4	26
68	Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions. FASEB Journal, 2016, 30, 688-701.	0.5	39
69	Prion (PRNP). , 2016, , 1-17.		0
70	Autonomic cardiocirculatory control in mice with reduced expression of the vesicular acetylcholine transporter. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H655-H662.	3.2	10
71	Hyperactivity and attention deficits in mice with decreased levels of stress inducible phosphoprotein 1 (STIP1). DMM Disease Models and Mechanisms, 2015, 8, 1457-66.	2.4	25
72	Pulmonary Inflammation Is Regulated by the Levels of the Vesicular Acetylcholine Transporter. PLoS ONE, 2015, 10, e0120441.	2.5	32

#	Article	IF	CITATIONS
73	Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter. PLoS ONE, 2015, 10, e0133989.	2.5	4
74	Increased Airway Reactivity and Hyperinsulinemia in Obese Mice Are Linked by ERK Signaling in Brain Stem Cholinergic Neurons. Cell Reports, 2015, 11, 934-943.	6.4	22
75	The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. Journal of Neuroscience, 2015, 35, 15157-15169.	3.6	110
76	The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens. Molecular Psychiatry, 2015, 20, 1448-1459.	7.9	59
77	α7 nicotinic ACh receptorâ€deficient mice exhibit sustained attention impairments that are reversed by β2 nicotinic ACh receptor activation. British Journal of Pharmacology, 2015, 172, 4919-4931.	5.4	13
78	Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction. PLoS ONE, 2014, 9, e100179.	2.5	43
79	Cholinergic Activity as a New Target in Diseases of the Heart. Molecular Medicine, 2014, 20, 527-537.	4.4	64
80	Quantitative Tissue Ph Measurement during Cerebral Ischemia Using Amine and Amide Concentration-Independent Detection (AACID) with MRI. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 690-698.	4.3	137
81	Letters to the Editor. FASEB Journal, 2014, 28, 2-3.	0.5	9
82	Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction. European Journal of Neuroscience, 2013, 38, 2978-2987.	2.6	19
83	Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells. Cellular Signalling, 2013, 25, 2424-2439.	3.6	44
84	Stressâ€inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia <i>via</i> the prion protein. FASEB Journal, 2013, 27, 3594-3607.	0.5	86
85	Forebrain Deletion of the Vesicular Acetylcholine Transporter Results in Deficits in Executive Function, Metabolic, and RNA Splicing Abnormalities in the Prefrontal Cortex. Journal of Neuroscience, 2013, 33, 14908-14920.	3.6	56
86	The monoterpene (–)â€carvone: A novel agonist of TRPV1 channels. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 212-219.	1.5	22
87	Lamininâ€Î³1 chain and stress inducible protein 1 synergistically mediate Pr <scp>P^C</scp> â€dependent axonal growth via Ca ²⁺ mobilization in dorsal root ganglia neurons. Journal of Neurochemistry, 2013, 124, 210-223.	3.9	27
88	Mice with selective elimination of striatal acetylcholine release are lean, show altered energy homeostasis and changed sleep/wake cycle. Journal of Neurochemistry, 2013, 124, 658-669.	3.9	21
89	Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochemical Journal, 2013, 450, 265-274.	3.7	109
90	1H, 15N and 13C backbone resonance assignments of the TPR1 and TPR2A domains of mouse STI1. Biomolecular NMR Assignments, 2013, 7, 305-310.	0.8	5

#	Article	IF	CITATIONS
91	ChAT-ChR2-EYFP Mice Have Enhanced Motor Endurance But Show Deficits in Attention and Several Additional Cognitive Domains. Journal of Neuroscience, 2013, 33, 10427-10438.	3.6	119
92	Increased prion protein processing and expression of metabotropic glutamate receptor 1 in a mouse model of Alzheimer's disease. Journal of Neurochemistry, 2013, 127, 415-425.	3.9	35
93	The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cellular and Molecular Life Sciences, 2013, 70, 3211-3227.	5.4	52
94	Decreased acetylcholine release delays the consolidation of object recognition memory. Behavioural Brain Research, 2013, 238, 62-68.	2.2	26
95	Regulation of Stress-Inducible Phosphoprotein 1 Nuclear Retention by Protein Inhibitor of Activated STAT PIAS1. Molecular and Cellular Proteomics, 2013, 12, 3253-3270.	3.8	25
96	The Prion Protein Ligand, Stress-Inducible Phosphoprotein 1, Regulates Amyloid-β Oligomer Toxicity. Journal of Neuroscience, 2013, 33, 16552-16564.	3.6	70
97	Cardiomyocyteâ€secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB Journal, 2013, 27, 5072-5082.	0.5	85
98	Sleep pattern and learning in knockdown mice with reduced cholinergic neurotransmission. Brazilian Journal of Medical and Biological Research, 2013, 46, 844-854.	1.5	8
99	Reduced Expression of the Vesicular Acetylcholine Transporter and Neurotransmitter Content Affects Synaptic Vesicle Distribution and Shape in Mouse Neuromuscular Junction. PLoS ONE, 2013, 8, e78342.	2.5	25
100	Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17651-17656.	7.1	57
101	Non-neuronal cholinergic machinery present in cardiomyocytes offsets hypertrophic signals. Journal of Molecular and Cellular Cardiology, 2012, 53, 206-216.	1.9	82
102	Expression of a recombinant Phoneutria toxin active in calcium channels. Toxicon, 2012, 60, 907-918.	1.6	3
103	Autonomic nervous system modulation affects the inflammatory immune response in mice with acute Chagas disease. Experimental Physiology, 2012, 97, 1186-1202.	2.0	24
104	PrP., 2012, , 1488-1488.		0
105	An Analysis of the Myocardial Transcriptome in a Mouse Model of Cardiac Dysfunction with Decreased Cholinergic Neurotransmission. PLoS ONE, 2012, 7, e39997.	2.5	9
106	Seeding plaques in Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 641-643.	3.9	6
107	Novel Strains of Mice Deficient for the Vesicular Acetylcholine Transporter: Insights on Transcriptional Regulation and Control of Locomotor Behavior. PLoS ONE, 2011, 6, e17611.	2.5	60
108	Antiarrhythmogenic effects of a neurotoxin from the spider Phoneutria nigriventer. Toxicon, 2011, 57, 217-224.	1.6	21

#	Article	IF	CITATIONS
109	Vesicular acetylcholine transporter knock-down mice show sexual dimorphism on memory. Brain Research Bulletin, 2011, 85, 54-57.	3.0	17
110	Amyloid-beta oligomers increase the localization of prion protein at the cell surface. Journal of Neurochemistry, 2011, 117, 538-553.	3.9	60
111	VAChT knock-down mice show normal prepulse inhibition but disrupted long-term habituation. Genes, Brain and Behavior, 2011, 10, 457-464.	2.2	15
112	Antinociceptive effect of Brazilian armed spider venom toxin Tx3–3 in animal models of neuropathic pain. Pain, 2011, 152, 2224-2232.	4.2	56
113	The Effect of Spider Toxin PhTx3-4, ω-Conotoxins MVIIA and MVIIC on Glutamate Uptake and on Capsaicin-Induced Glutamate Release and [Ca2+]i in Spinal cord Synaptosomes. Cellular and Molecular Neurobiology, 2011, 31, 277-283.	3.3	14
114	Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminili γ1 chain. FASEB Journal, 2011, 25, 265-279.	0.5	109
115	Elimination of the Vesicular Acetylcholine Transporter in the Striatum Reveals Regulation of Behaviour by Cholinergic-Glutamatergic Co-Transmission. PLoS Biology, 2011, 9, e1001194.	5.6	80
116	Quantal release of acetylcholine in mice with reduced levels of the vesicular acetylcholine transporter. Journal of Neurochemistry, 2010, 113, 943-951.	3.9	50
117	Role of α7 Nicotinic Acetylcholine Receptor in Calcium Signaling Induced by Prion Protein Interaction with Stress-inducible Protein 1. Journal of Biological Chemistry, 2010, 285, 36542-36550.	3.4	92
118	Dysautonomia Due to Reduced Cholinergic Neurotransmission Causes Cardiac Remodeling and Heart Failure. Molecular and Cellular Biology, 2010, 30, 1746-1756.	2.3	70
119	Reduced expression of mir15a in the blood of patients with oral squamous cell carcinoma is associated with tumor staging. Experimental and Therapeutic Medicine, 2010, 1, 217-221.	1.8	14
120	Prion protein: orchestrating neurotrophic activities. Current Issues in Molecular Biology, 2010, 12, 63-86.	2.4	81
121	The Vesicular Acetylcholine Transporter Is Required for Neuromuscular Development and Function. Molecular and Cellular Biology, 2009, 29, 5238-5250.	2.3	105
122	Phoneutria spider toxins block ischemiaâ€induced glutamate release, neuronal death, and loss of neurotransmission in hippocampus. Hippocampus, 2009, 19, 1123-1129.	1.9	41
123	Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice. Genes, Brain and Behavior, 2009, 8, 23-35.	2.2	53
124	Ouabain evokes exocytosis dependent on ryanodine and mitochondrial calcium stores that is not followed by compensatory endocytosis at the neuromuscular junction. Neurochemistry International, 2009, 55, 406-413.	3.8	2
125	Protective Effect of Retinal Ischemia by Blockers of Voltage-dependent Calcium Channels and Intracellular Calcium Stores. Cellular and Molecular Neurobiology, 2008, 28, 847-856.	3.3	17
126	Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. Journal of Neurochemistry, 2008, 79, 79-87.	3.9	100

#	Article	IF	CITATIONS
127	Trafficking of green fluorescent protein tagged-vesicular acetylcholine transporter to varicosities in a cholinergic cell line. Journal of Neurochemistry, 2008, 79, 717-717.	3.9	0
128	Protein kinase C modulates synaptic vesicle acidification in a ribbon type nerve terminal in the retina. Neurochemistry International, 2008, 53, 155-164.	3.8	15
129	Vesicular acetylcholine transporter knock-down mice are more susceptible to pilocarpine induced status epilepticus. Neuroscience Letters, 2008, 436, 201-204.	2.1	10
130	Tx3-4 a toxin from the venom of spider Phoneutria nigriventer blocks calcium channels associated with exocytosis. Neuroscience Letters, 2008, 439, 170-172.	2.1	16
131	Analgesic effect in rodents of native and recombinant Phα1β toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. Pain, 2008, 140, 115-126.	4.2	92
132	Physiology of the Prion Protein. Physiological Reviews, 2008, 88, 673-728.	28.8	523
133	Endocytosis of Prion Protein Is Required for ERK1/2 Signaling Induced by Stress-Inducible Protein 1. Journal of Neuroscience, 2008, 28, 6691-6702.	3.6	86
134	SEC14-like protein 1 interacts with cholinergic transporters. Neurochemistry International, 2007, 50, 356-364.	3.8	26
135	Regulated recycling and plasma membrane recruitment of the highâ€affinity choline transporter. European Journal of Neuroscience, 2007, 26, 3437-3448.	2.6	30
136	The effect of sevoflurane on intracellular calcium concentration from cholinergic cells. Brain Research Bulletin, 2006, 69, 147-152.	3.0	9
137	Neuroprotective effect on brain injury by neurotoxins from the spider Phoneutria nigriventer. Neurochemistry International, 2006, 49, 543-547.	3.8	32
138	Mice Deficient for the Vesicular Acetylcholine Transporter Are Myasthenic and Have Deficits in Object and Social Recognition. Neuron, 2006, 51, 601-612.	8.1	208
139	The "ins" and "outs" of the high-affinity choline transporter CHT1. Journal of Neurochemistry, 2006, 97, 1-12.	3.9	77
140	Characterization of a Trypanosoma cruzi antigen with homology to intracellular mammalian lectins. International Journal for Parasitology, 2006, 36, 1473-1484.	3.1	2
141	A rat homologue of CED-6 is expressed in neurons and interacts with clathrin. Brain Research, 2006, 1119, 1-12.	2.2	13
142	Mouse-Adapted Scrapie Infection of SN56 Cells: Greater Efficiency with Microsome-Associated versus Purified PrP-res. Journal of Virology, 2006, 80, 2106-2117.	3.4	71
143	Constitutive high-affinity choline transporter endocytosis is determined by a carboxyl-terminal tail dileucine motif. Journal of Neurochemistry, 2005, 94, 86-96.	3.9	66
144	Structural requirements for steady-state localization of the vesicular acetylcholine transporter. Journal of Neurochemistry, 2005, 94, 957-969.	3.9	26

#	Article	IF	CITATIONS
145	Uptake and Neuritic Transport of Scrapie Prion Protein Coincident with Infection of Neuronal Cells. Journal of Neuroscience, 2005, 25, 5207-5216.	3.6	137
146	Dopamine Release Evoked by Beta Scorpion Toxin, Tityus Gamma, in Prefrontal Cortical Slices is Mediated by Intracellular Calcium Stores. Cellular and Molecular Neurobiology, 2004, 24, 757-767.	3.3	11
147	Okadaic acid disrupts synaptic vesicle trafficking in a ribbon-type synapse. Journal of Neurochemistry, 2004, 82, 1047-1057.	3.9	20
148	Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex. Journal of Neurochemistry, 2004, 82, 1221-1228.	3.9	41
149	PrP ^c on the road: trafficking of the cellular prion protein. Journal of Neurochemistry, 2004, 88, 769-781.	3.9	88
150	Effects of α-scorpion toxin, tityustoxin on the release of [3H] dopamine of rat brain prefrontal cortical slices. Neurochemistry International, 2004, 44, 91-97.	3.8	17
151	Effect of halothane on the release of [Ca2+]i in dorsal root ganglion neurons. NeuroReport, 2004, 15, 1187-1190.	1.2	5
152	Exocytotic Release of [3H]-Acetylcholine by Ouabain Involves Intracellular Ca2+Stores in Rat Brain Cortical Slices. Cellular and Molecular Neurobiology, 2003, 23, 917-927.	3.3	5
153	The hemicholinium-3 sensitive high affinity choline transporter is internalized by clathrin-mediated endocytosis and is present in endosomes and synaptic vesicles. Journal of Neurochemistry, 2003, 87, 136-146.	3.9	67
154	Towards cellular receptors for prions. Reviews in Medical Virology, 2003, 13, 399-408.	8.3	51
155	Expression of a functional recombinant Phoneutria nigriventer toxin active on K+ channels. Toxicon, 2003, 41, 305-313.	1.6	18
156	PnTx3-6 a spider neurotoxin inhibits K+-evoked increase in [Ca2+]i and Ca2+-dependent glutamate release in synaptosomes. Neurochemistry International, 2003, 42, 277-282.	3.8	28
157	Molecular Basis for Pacemaker Cells in Epithelia. Journal of Biological Chemistry, 2002, 277, 16313-16323.	3.4	46
158	Endocytic Intermediates Involved with the Intracellular Trafficking of a Fluorescent Cellular Prion Protein. Journal of Biological Chemistry, 2002, 277, 33311-33318.	3.4	105
159	Cellular prion protein: on the road for functions. FEBS Letters, 2002, 512, 25-28.	2.8	123
160	Regulation of acetylcholine synthesis and storage. Neurochemistry International, 2002, 41, 291-299.	3.8	100
161	Investigation of the modulation of glutamate release by sodium channels using neurotoxins. Neuroscience, 2002, 113, 115-123.	2.3	31
162	Translocation of protein kinase C by halothane in cholinergic cells. Brain Research Bulletin, 2002, 58, 55-59.	3.0	4

#	Article	IF	CITATIONS
163	Release of Î ³ -[3H]aminobutyric acid in rat brain cortical slices by α-scorpion toxin. Neuroscience Letters, 2002, 325, 155-158.	2.1	5
164	Visualization and Trafficking of the Vesicular Acetylcholine Transporter in Living Cholinergic Cells. Journal of Neurochemistry, 2002, 74, 2425-2435.	3.9	3
165	Inhibition of Na+,K+-ATPase by Ouabain Opens Calcium Channels Coupled to Acetylcholine Release in Guinea Pig Myenteric Plexus. Journal of Neurochemistry, 2002, 66, 1440-1447.	3.9	21
166	Recycling of Synaptic Vesicles at the Frog Neuromuscular Junction in the Presence of Strontium. Journal of Neurochemistry, 2002, 70, 2477-2483.	3.9	15
167	Regulation of vesicular acetylcholine transporter by the activation of excitatory amino acid receptors in the avian retina. Cellular and Molecular Neurobiology, 2002, 22, 727-740.	3.3	6
168	Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels. Cellular and Molecular Neurobiology, 2002, 22, 579-588.	3.3	135
169	Signals involved in targeting membrane proteins to synaptic vesicles. Cellular and Molecular Neurobiology, 2002, 22, 565-577.	3.3	23
170	Spider neurotoxins block the β scorpion toxin-induced calcium uptake in rat brain cortical synaptosomes. Brain Research Bulletin, 2001, 54, 533-536.	3.0	25
171	Effects of a Lasiodora spider venom on Ca 2+ and Na + channels. Toxicon, 2001, 39, 991-1002.	1.6	16
172	Endovascular Therapy for Priapism Secondary to Perineal Trauma. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 50, 581-584.	2.4	14
173	β-Scorpion toxin induces the release of γ-[3H]aminobutyric acid in rat brain slices. NeuroReport, 2001, 12, 2911-2913.	1.2	9
174	Trafficking of green fluorescent protein tagged-vesicular acetylcholine transporter to varicosities in a cholinergic cell line. Journal of Neurochemistry, 2001, 78, 1104-1113.	3.9	36
175	Phoneutria nigriventer Toxin Tx3-1 Blocks A-Type K+ Currents Controlling Ca2+ Oscillation Frequency in GH3 Cells. Journal of Neurochemistry, 2001, 72, 1472-1481.	3.9	62
176	Changes in Ca2+ channel expression upon differentiation of SN56 cholinergic cells. Brain Research, 2001, 916, 199-210.	2.2	28
177	Halothane-induced intracellular calcium release in cholinergic cells. Brain Research, 2001, 921, 106-114.	2.2	13
178	Inhibition of glutamate uptake by Tx3-4 is dependent on the redox state of cysteine residues. NeuroReport, 2000, 11, 2191-2194.	1.2	23
179	Calcium channels coupled to depolarization-evoked glutamate release in the myenteric plexus of guinea-pig ileum. Neuroscience, 2000, 101, 237-242.	2.3	29
180	The effect of isoflurane on the release of [3H]-acetylcholine from rat brain cortical slices. Brain Research Bulletin, 2000, 52, 263-267.	3.0	19

#	Article	IF	CITATIONS
181	Molecular cloning of cDNAs encoding insecticidal neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon, 2000, 38, 1443-1449.	1.6	34
182	Halothane enhances exocytosis of [3H]-acetylcholine without increasing calcium influx in rat brain cortical slices. British Journal of Pharmacology, 1999, 127, 679-684.	5.4	12
183	Muscarinic regulation of Ca2+ oscillation frequency in GH3 cells. Brain Research, 1999, 851, 39-45.	2.2	5
184	Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer. Biochemical Journal, 1999, 343, 413-418.	3.7	37
185	Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer. Biochemical Journal, 1999, 343, 413.	3.7	17
186	Control of the binding of a vesamicol analog to the vesicular acetylcholine transporter. NeuroReport, 1999, 10, 2783-2786.	1.2	11
187	Role of protein kinase C in the release of [3H]acetylcholine from myenteric plexus treated with vesamicol. Neuroscience Letters, 1998, 244, 115-117.	2.1	8
188	The effect of calcium channels blockers in the K+-evoked release of [3H]adenine nucleotides from rat brain cortical synaptosomes. Neuroscience Letters, 1998, 258, 57-59.	2.1	2
189	Investigation of the effect of PhTx2, from the venom of the spider Phoneutria nigriventer, on the release of [3H]-acetylcholine from rat cerebrocortical synaptosomes. Toxicon, 1998, 36, 1189-1192.	1.6	17
190	Cloning of cDNAs encoding neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon, 1998, 36, 1843-1850.	1.6	34
191	Cloning, cDNA sequence analysis and patch clamp studies of a toxin from the venom of the armed spider (Phoneutria nigriventer). Toxicon, 1998, 36, 1971-1980.	1.6	38
192	Phoneutria nigriventer toxins block tityustoxin-induced calcium influx in synaptosomes. NeuroReport, 1998, 9, 1371-1373.	1.2	41
193	Tityustoxin-induced release of ATP from rat brain cortical synaptosomes. Neuroscience Letters, 1997, 229, 113-116.	2.1	4
194	Different effects of reducing agents on ω-conotoxin GVIA inhibition of [3 H]-acetylcholine release from rat cortical slices and guinea-pig myenteric plexus. British Journal of Pharmacology, 1997, 120, 88-92.	5.4	8
195	A toxin from the spider Phoneutria nigriventer that blocks calcium channels coupled to exocytosis. British Journal of Pharmacology, 1997, 122, 591-597.	5.4	59
196	Effect of vesamicol on the release of ATP from cortical synaptosomes. Neuroscience Letters, 1996, 204, 37-40.	2.1	7
197	A novel tool for the investigation of glutamate release from rat cerebrocortical synaptosomes: the toxin Tx3-3 from the venom of the spider Phoneutria nigriventer. Biochemical Journal, 1996, 314, 145-150.	3.7	63
198	Inhibition of potassium-stimulated acetylcholine release from rat brain cortical slices by two high-affinity analogs of vesamicol. Brain Research, 1995, 703, 86-92.	2.2	4

#	Article	IF	CITATIONS
199	The effect of PhTx3 on the release of 3H-acetylcholine induced by tityustoxin and potassium in brain cortical slices and myenteric plexus. Neuroscience Letters, 1995, 196, 131-133.	2.1	20
200	Effects of Tityustoxin on Central Nervous System. Toxin Reviews, 1995, 14, 437-456.	1.5	16
201	Mobilization of a Vesamicol-Insensitive Pool of Acetylcholine from a Sympathetic Ganglion by Ouabain. Journal of Neurochemistry, 1993, 61, 45-56.	3.9	14
202	Chapter 21: Storage and release of acetylcholine in a sympathetic ganglion. Progress in Brain Research, 1993, 98, 183-189.	1.4	11
203	Effects of tityustoxin and ouabain on release of acetylcholine from slices of cortex from the rat brain and on the acetylcholine content of cytoplasmic and crude vesicular fractions. Neuropharmacology, 1992, 31, 383-387.	4.1	2
204	Mobilization of the Readily Releasable Pool of Acetylcholine from a Sympathetic Ganglion by Tityustoxin in the Presence of Vesamicol. Journal of Neurochemistry, 1992, 59, 544-552.	3.9	31
205	Choline oxidase chemiluminéscent assay, after removal of eserine from medium, of acetylcholine released in vitro from brain slices. Journal of Neuroscience Methods, 1990, 31, 193-196.	2.5	7
206	The effect of 2-(4-phenylpiperidino)cyclohexanol (AH-5183), tityustoxin and ouabain on the release of acetylcholine and its mobilization from cytoplasmic and vesicular pools of rat brain cortical slices. Neuroscience Letters, 1990, 111, 195-200.	2.1	7