Simeon Bird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/384517/publications.pdf Version: 2024-02-01

SIMEON RIDD

#	Article	IF	CITATIONS
1	Densified Pupil Spectrograph as High-precision Radial Velocimetry: From Direct Measurement of the Universe's Expansion History to Characterization of Nearby Habitable Planet Candidates. Astronomical Journal, 2022, 163, 63.	4.7	2
2	Improved selection of extremely red quasars with boxy C <scp>iv</scp> lines in BOSS. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3501-3513.	4.4	5
3	The ASTRID simulation: the evolution of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2022, 513, 670-692.	4.4	47
4	The ASTRID simulation: galaxy formation and reionization. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3703-3716.	4.4	43
5	Characterizing Protoclusters and Protogroups at z â^¼ 2.5 Using Lyα Tomography. Astrophysical Journal, 2022, 930, 109.	4.5	9
6	Massive black hole mergers with orbital information: predictions from the ASTRID simulation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2220-2238.	4.4	9
7	A population of ultraviolet-dim protoclusters detected in absorption. Nature, 2022, 606, 475-478.	27.8	8
8	The Low-redshift Lyα Forest as a Constraint for Models of AGN Feedback. Astrophysical Journal Letters, 2022, 933, L46.	8.3	8
9	Effect of separate initial conditions on the lyman-α forest in simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1668-1679.	4.4	2
10	Al-assisted superresolution cosmological simulations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
11	Impact of a midband gravitational wave experiment on detectability of cosmological stochastic gravitational wave backgrounds. Physical Review D, 2021, 103, .	4.7	16
12	Damped Lyman-α absorbers from Sloan digital sky survey DR16Q with Gaussian processes. Monthly Notices of the Royal Astronomical Society, 2021, 507, 704-719.	4.4	14
13	Al-assisted superresolution cosmological simulations – II. Halo substructures, velocities, and higher order statistics. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1021-1033.	4.4	19
14	Multifidelity emulation for the matter power spectrum using Gaussian processes. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2551-2565.	4.4	15
15	Dynamical friction modelling of massive black holes in cosmological simulations and effects on merger rate predictions. Monthly Notices of the Royal Astronomical Society, 2021, 510, 531-550.	4.4	30
16	Nucleosynthetic signatures of primordial origin around supermassive black holes. Physical Review D, 2021, 104, .	4.7	3
17	The large-scale distribution of ionized metals in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2021, 510, 399-412.	4.4	6
18	Detecting multiple DLAs per spectrum in SDSS DR12 with Gaussian processes. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5436-5454.	4.4	11

SIMEON BIRD

#	Article	IF	CITATIONS
19	Automated measurement of quasar redshift with a Gaussian process. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5227-5239.	4.4	4
20	Inhomogeneous He <scp>ii</scp> reionization in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4372-4382.	4.4	21
21	Cosmic filaments from cosmic strings. Physical Review D, 2020, 102, .	4.7	6
22	Massive neutrinos and degeneracies in Lyman-alpha forest simulations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 025-025.	5.4	12
23	More accurate simulations with separate initial conditions for baryons and dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 002-002.	5.4	23
24	An emulator for the Lyman-Î \pm forest. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 050-050.	5.4	44
25	Imprints of temperature fluctuations on the z â^¼ 5 Lyman-α forest: a view from radiation-hydrodynamic simulations of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3177-3195.	4.4	33
26	Bayesian emulator optimisation for cosmology: application to the Lyman-alpha forest. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	5.4	49
27	The BAHAMAS project: the CMB–large-scale structure tension and the roles of massive neutrinos and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2999-3030.	4.4	113
28	MassiveNuS: cosmological massive neutrino simulations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 049-049.	5.4	82
29	An efficient and accurate hybrid method for simulating non-linear neutrino structure. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1486-1500.	4.4	52
30	Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3716-3728.	4.4	16
31	Supernova Study Dampens Dark Matter Theory. Physics Magazine, 2018, 11, .	0.1	0
32	Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3032-3042.	4.4	23
33	The SDSS-DR12 large-scale cross-correlation of damped Lyman alpha systems with the Lyman alpha forest. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3019-3038.	4.4	46
34	Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions. Physical Review D, 2018, 97, .	4.7	127
35	The Effect of AGN Heating on the Low-redshift LyαÂForest. Astrophysical Journal, 2017, 835, 175.	4.5	26
36	Giant Lyα Nebulae in the Illustris Simulation. Astrophysical Journal, 2017, 835, 207.	4.5	19

SIMEON BIRD

#	Article	IF	CITATIONS
37	Statistical properties of damped Lyman-alpha systems from Sloan Digital Sky Survey DR12. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2111-2122.	4.4	42
38	The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2017, 471, 227-242.	4.4	58
39	Detecting damped Ly α absorbers with Gaussian processes. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1850-1865.	4.4	25
40	Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4343-4360.	4.4	42
41	The bahamas project: calibrated hydrodynamical simulations for large-scale structure cosmology. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2936-2965.	4.4	304
42	<i>z</i> ~ 6 metal-line absorbers as a probe of galactic feedback models. Proceedings of the International Astronomical Union, 2016, 11, 75-77.	0.0	0
43	Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers. Physical Review Letters, 2016, 117, 201102.	7.8	99
44	Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4117-4129.	4.4	16
45	Orbital eccentricities in primordial black hole binaries. Physical Review D, 2016, 94, .	4.7	85
46	Determining the progenitors of merging black-hole binaries. Physical Review D, 2016, 94, .	4.7	65
47	Cross-correlation between thermal Sunyaev-Zeldovich effect and the integrated Sachs-Wolfe effect. Physical Review D, 2016, 94, .	4.7	12
48	Did LIGO Detect Dark Matter?. Physical Review Letters, 2016, 116, 201301.	7.8	872
49	Testing the effect of galactic feedback on the IGM at <i>z</i> â^¼ 6 with metal-line absorbers. Monthly Notices of the Royal Astronomical Society, 2016, 461, 606-626.	4.4	43
50	Simulating the carbon footprint of galactic haloes. Monthly Notices of the Royal Astronomical Society, 2016, 462, 307-322.	4.4	11
51	The BlueTides simulation: first galaxies and reionization. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2778-2791.	4.4	148
52	THE FORMATION OF MILKY WAY–MASS DISK GALAXIES IN THE FIRST 500 MILLION YEARS OF A COLD DARK MATTER UNIVERSE. Astrophysical Journal Letters, 2015, 808, L17.	8.3	40
53	Modeling the Observability of Recoiling Black Holes as Offset Quasars. Proceedings of the International Astronomical Union, 2015, 11, 317-318.	0.0	0
54	The impact of galactic feedback on the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2015, 448, 895-909.	4.4	82

SIMEON BIRD

#	Article	IF	CITATIONS
55	Reproducing the kinematics of damped Lyman $\hat{I}\pm$ systems. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1834-1846.	4.4	77
56	Damped Lyman α absorbers as a probe of stellar feedback. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2313-2324.	4.4	105
57	CONSTRAINTS ON IONIZING PHOTON PRODUCTION FROM THE LARGE-SCALE LyÎ \pm FOREST. Astrophysical Journal Letters, 2014, 792, L34.	8.3	16
58	Properties of galaxies reproduced by a hydrodynamic simulation. Nature, 2014, 509, 177-182.	27.8	979
59	Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 026-026.	5.4	119
60	Non-linear evolution of the cosmic neutrino background. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 019-019.	5.4	66
61	An efficient implementation of massive neutrinos in non-linear structure formation simulations. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3375-3389.	4.4	117
62	Moving-mesh cosmology: properties of neutral hydrogen in absorption. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3341-3352.	4.4	52
63	Constraints on massive neutrinos from the CFHTLS angular power spectrum. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 010-010.	5.4	37
64	Massive neutrinos and the non-linear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2551-2561.	4.4	263
65	Minimally parametric power spectrum reconstruction from the Lyman $\hat{I}\pm$ forest. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1717-1728.	4.4	82
66	Brane inflation and the overshoot problem. Physical Review D, 2009, 80, .	4.7	14
67	Probing Inflation with CMB Polarization. , 2009, , .		252
68	Fine-tuning criteria for inflation and the search for primordial gravitational waves. Physical Review D, 2008, 78, .	4.7	12
69	Forecasts for Broadband Intensity Mapping of the Ultraviolet-Optical Background with CASTOR and SPHEREx. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1